(3.235.245.219) 您好!臺灣時間:2021/05/07 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐德華
研究生(外文):Te-Hua Hsu
論文名稱:台灣鮭魚的分子遺傳標記
論文名稱(外文):Molecular Markers of Formosa Landlocked Salmon
指導教授:郭金泉郭金泉引用關係
指導教授(外文):Jin-Chywan Gwo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:台灣鮭魚分子標記系統發生AFLP性別鑑定性比族群遺傳保育
外文關鍵詞:Fomosa landlocked salmonmolecular markersphylogenyAFLPsex identificationsex ratiopopulation geneticsconservation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:705
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討台灣鮭魚保育上的3個議題:(1)櫻鮭家族成員間之親緣關系;(2)遺傳多樣性的調查;(3)台灣鮭魚性別比例的推估。
使用AFLP分子標記分析四個櫻鮭家族(Oncorhynchus masou complex)成員的親緣關係,並以Nei遺傳距離(Nei's genetic distance)與鄰接法(Neighbor-joining method)所建構出之演化樹(Phylogenetic tree)中,台灣鮭魚(O. m. formosanus)為最早分化出之亞種,其次為櫻鮭(O. m. masou),最後為琵琶鮭(O. m. subsp.)和石川鮭(O. m. ishikawae)。此結果不但顯示台灣鮭魚並非櫻鮭之地域族群(Local population),同時也排除台灣鮭魚是近代引進之外來物種的可能性。據此結果推測,台灣鮭魚應源於櫻鮭家族之共同祖先,而非源於櫻鮭。由於台灣鮭魚自然陸封於台灣大甲溪上游並且獨立演化,因此需視為顯著演化單元(Evolutionarily Significant Unit)採取保育措施。此外,本研究也發現數條台灣鮭魚的AFLP特有條帶,可輔助傳統分類方法之不足,有效鑑別櫻鮭家族的成員。
在台灣鮭魚遺傳多樣性的調查中,於2004年及2005年分別自七家灣溪1至3號壩間採集了30尾及28尾台灣鮭魚樣本。以微衛星標記(Microsatellite)和AFLP進行分析,27個微衛星位點中僅有1個微衛星位點具有2個等位基因,展現多樣性,其餘位點皆為同質,平均基因多樣性指數(He)分別為0.0071與0.0067;使用3個AFLP選擇性引子對,共得到196條擴增片段,多樣性片段為58條(29.59%),基因多樣性指數為0.045及0.054。微衛星及AFLP數據皆顯示台灣鮭魚遺傳變異極低。比較二年的AFLP數據可以發現,雖然基因多樣性指數並未下降,但2004年樣本具有的多樣性位點約有3分之1在2005年樣本中消失或固定,另外3分之1的位點頻率大幅改變,呈現隨機飄變的現象。此結果顯示台灣鮭魚遺傳多樣性正持續喪失,個體趨於同質。
本研究開發出以PCR鑑定台灣鮭魚性別的方法。此方法具有不受季節、發育時間等限制的優點,其準確性高達98.32%(124個樣本中有二個樣本的表型與基因型不符)。2004至2008年的野外台灣鮭魚族群的性比(雄/雌)分別為0.59、0.50、1.19、0.57、0.72,其中2007年的性比顯著偏離1:1 (P < 0.05)。此結果顯示台灣鮭魚的性比並非固定於1:1,在有效族群的計算上,應考量到性比不均的情況。
總結來說,台灣鮭魚為櫻鮭家族中的顯著演化單元,在遺傳及地理分布上均有其特殊性,在保育措施(例如:野外族群監測、人工繁殖放流、精液凍結保存等)實行的同時,AFLP及性別標記可有效進行遺傳管理,保存最大基因多樣性,希望達到保全台灣鮭魚永續生存的目標。
This study aimed at investigating three conservation issues on Formosa landlocked salmon: (i) the phylogenetic relationship between Formosa landlocked salmon and other subspecies of Masu salmon complex (Oncorhynchus masou complex), (ii) the genetic diversity that exists in Formosa landlocked salmon, and (iii) the estimation of the sex ratio of Formosa landlocked salmon.
The phylogenetic tree is reconstructed based on AFLP data and by using neighbor-joining method and Nei's genetic distance. In this tree, Biwa salmon (O. m. subsp.) and Amago salmon (O. m. ishikawae) are clustered first, Masu salmon (O. m. masou) are clustered second, and finally Formosa landlocked salmon (O. m. formosanus) are jointed to this cluster. The high bootstrap values at each node indicate that this tree is robust. The results show that instead of dividing from Msau salmon, Formosa landlocked salmon is the first subspecies divided from ancestor of Masu salmon complex. Formosa landlocked salmon is considered as an evolutionarily significant unit (ESU) due to geographic separation and genetic differentiation among Masu salmon complex. Furthermore, several subspecies specific bands, which are helpful for distinguishing subspecies from each other, are found in each member of Masu salmon complex.
Genetic diversity of Formosa landlocked salmon in Chichiawan Stream are examined by using AFLP and Microsatellite markers. For consecutive two years (2004 and 2005), a total of fifty-eight individuals (thirty in 2004 and twenty-eight in 2005) were examined. Of twenty-seven Microsatellite loci, only one locus was polymorphic with two alleles while others were monomorphic. The average He are 0.0071 and 0.0067, respectively. One hundred and ninety six loci were detected using three AFLP selective primer pairs, of which fifty-eight were polymorphic with a proportion of 29.59%. The average He are 0.0045 and 0.054, respectively. Both Microsatellite and AFLP data show the low genetic diversity in Formosa landlocked salmon. Comparison of allele frequency of fifty-eight AFLP polymorphic loci between two years, eighteen (about one third) of the amplified polymorphic loci became fixed (p = 100%) or lost (p = 0%) and another sixteen (about one third) was changed in the 2005 population. The results indicate that Formosa landlocked salmon are losing genetic diversity due to genetic drift.
In this study, a simple, reliable, non-invasive PCR method is developed to identify sex of Formosa landlocked salmon. The reliability of sex identification is 98.40% (1.60% mismatch; two mismatches in 125 individuals) for Formosa landlocked salmon. The sex ratios (male/female) of field Formosa landlocked salmon from 2004 to 2008 were 0.59, 0.50, 1.19, 0.57 and 0.72, respectively. The sex ratio of 2007 was significant differed from 1:1 (p<0.05). The results indicate the sex ratio of Formosa landlocked salmon is not consistent with 1:1. Biased sex ratio has to be considered when effective population size is counted.
In summary, Formosa landlocked salmon is an ESU of Masu salmon complex and should be conserved. In conservation program, AFLP and sex marker are useful tools for genetic management and conserving maximum genetic diversity.
謝辭.......................................................i
中文摘要...................................................ii
英文摘要..................................................iii
目錄......................................................iv
表目錄.....................................................v
圖目錄....................................................vi
第一章 前言.................................................1
第一節 台灣鮭魚簡介........................................1
第二節 台灣鮭魚的生存危機...................................3
第三節 生物多樣性與保育遺傳學...............................6
第四節 分子標記簡介........................................9
第五節 性別鑑定在保育生物學的重要性.........................11
第六節 太平洋鮭魚的性別決定機制及性別標記....................12
第七節 研究目的..........................................13
第二章 材料方法............................................15
第一節 樣本來源及採集地點..................................15
第二節 粹取樣本基因組DNA..................................16
第三節 AFLP指紋圖譜建構...................................17
第四節 AFLP數據分析......................................19
第五節 微衛星DNA圖譜建構..................................22
第六節 開發台灣鮭魚的性別標記..............................22
第三章 結果................................................25
第一節 櫻鮭家族的親緣關係..................................25
第二節 台灣鮭魚的遺傳多樣性................................26
第三節 台灣鮭魚性別標記與性比..............................27
第四章 討論................................................30
第一節 櫻鮭家族的親緣關係..................................30
第二節 台灣鮭魚的遺傳多樣性................................32
第三節 台灣鮭魚性別標記與性比..............................35
第四節 台灣鮭魚的未來.....................................38
第五章 結論................................................40
參考文獻...................................................41
圖........................................................50
表........................................................67
附錄1台灣鮭魚的分子遺傳標記-預備實驗.........................80
附錄2黑鯛精液樣本凍結前後的AFLP測試..........................83
附錄3 Genetic integrity of black sea bream (Acanthopagrus schlegeli) sperm following cryopreservation...............85
作者簡歷...................................................90
大島正滿(1919),臺灣?產??鱒?一新種?就?。臺灣農事報。151,頁14-16。
大島正滿(1934),冰河問題?關??生物學的寄與。植物及動物,2(10),頁1657-1664。
大島正滿(1936),大甲溪???關??生態學的研究。植物及動物,4(2),頁337-349。
王志勇、王藝磊、林利民、洪惠馨、張雅芝、邱淑貞、岡本信明(2000),利用AFLP指紋技術研究中國沿海真鯛群體的遺傳變異和趨異,水產學報,25(4),頁288-293。
王昱仁(1997),台灣鉤吻鮭與日本鉤吻鮭遺傳多樣性之研究,碩士論文,國立清華大學,新竹、台灣,國立清華大學。
汪靜明(2000),台灣櫻花鉤吻鮭復育策略。櫻花鉤吻鮭保育研究研討會論文集。頁290-295。南投、台灣:農委會特有生物中心。
林幸助、吳聲海、官文惠、邵廣昭、施習德、孫元勳、郭美華、彭宗仁、曾晴賢、楊正澤、葉文斌、葉昭憲、蔡尚?(2006),武陵地區長期生態監測暨生態模式建立,苗栗、台灣:內政部營建署雪霸國家公園管理處。
林幸助、吳聲海、官文惠、邵廣昭、施習德、孫元勳、郭美華、彭宗仁、曾晴賢、楊正澤、葉文斌、葉昭憲、蔡尚?(2008),武陵地區長期生態監測暨生態模式建立,苗栗、台灣:內政部營建署雪霸國家公園管理處。
林曜松、楊平世、梁世雄、曹先紹、莊鈴川(1987),櫻花鉤吻鮭生態之研究(一) 魚群分布與環境因子關係之初步研究,台北、台灣:行政院農業委員會。
林曜松、曹先紹、張崑雄、楊平世(1988),櫻花鉤吻鮭生態之研究(二) 族群分布與環境因子關係之研究,台北、台灣:行政院農業委員會。
吳祥堅(2000),台灣櫻花鉤吻鮭人工繁殖與放流。櫻花鉤吻鮭保育研究研討會論文集。頁31-46。南投、台灣:農委會特有生物中心。
青木赳雄(1917),台灣??鱒?產?(豫報)。台灣水產雜誌,23,頁 51-54頁。
郭金泉(2000),台灣陸封型鮭魚 (Oncorhynchus masou formosanus) 真骨魚類、鮭目、鮭科精子親緣與凍結保存之應用:資源保育之芻議。櫻花鉤吻鮭保育研究研討會論文集。頁47-77。南投、台灣:農委會特有生物中心。
郭金泉、周以正(2006),台灣鮭魚的中文學名。科技報導,295,12版。
郭金泉(2008),臺灣陸封鮭魚早期日文文獻之考證。國立臺灣博物館學刊,61(3),頁55-84。
夏軍紅、鄭勁松、魏卓、趙慶中、王丁(2004),天鵝洲保護區長江江豚AFLP遺傳多樣性分析,高技術通訊,7,頁25-28。
曾晴賢(2005),武陵地區長期生態監測暨生態模式建立:櫻花鉤吻鮭族群監測與動態分析,苗栗、台灣:內政部營建署雪霸國家公園管理處。
楊正雄(1997),水溫對櫻花鉤吻鮭族群的影響。碩士論文,國立清華大學,新竹、台灣,國立清華大學。
鄧火土(1959),台灣高地產陸封鮭魚的形態與生態,基隆、台灣:臺灣省水產試驗所。
興儀喜宣、中村廣司(1938),臺灣高地產鱒。天然紀念物調查報告第五輯,臺灣總督府內務局。林曜松譯(1986),臺灣高地產鱒。自然文化景觀保育論文集(二)鮭鱒魚保育專輯。頁1-13,台北、台灣:行政院農業委員會。
蘇天賜、賴春櫻(2000),櫻花鉤吻鮭保護區之現況及保育措施,櫻花鉤吻鮭保育研究研討會論文集,頁228-243。南投、台灣:農委會特有生物中心。
Albertson, R.C., Markert, J.A., Danley, P.D., Kocher, T.D.(1999), Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proceedings of the National Academy of Sciences of the United States of America, 96, pp 5107-5110.
Allendorf, F.W., Luikart, G.(2007), Conservation and the genetics of populations, Oxford, UK:Blackwell Publishing Press.
Anon.(1993), Convention on Biological Diversity, United Nations Environment Programme.
Bassam, B.J., Caetanoanolles, G., Gresshoff, P.M.(1991), Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Analytical Biochemistry, 196, pp 80-83.
Behnke, R.J., Koh, T.-P., Needham, P.R.(1962), Status of the landlocked salmonid fishes of Formosa with a review of Oncorhynchus masou (Brevoort). Copeia, 2, pp 400-407 .
Bensch, S., Akesson, M.(2005), Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology, 14, pp 2899-2914.
Brunelli, J.P., Thorgaard, G.H.(2004), A new Y-chromosome-specific marker for Pacific salmon. Transactions of the American Fisheries Society, 133, pp 1247-1253.
Buntjer, J.B., Otsen, M., Nijman, I.J., Kuiper, M.T.R., Lenstra, J.A.(2002), Phylogeny of bovine species based on AFLP fingerprinting. Heredity, 88, pp 46-51.
Chen, D., Zhang, C., Lu, C., Chang, Y., Chang, J.(2005), Amplified fragment length polymorphism analysis to identify the genetic structure of the Gymnocypris przewalskii (Kessler, 1876) population from the Qinghai Basin, China. Journal of Applied Ichthyology, 21, pp 178-183.
Devlin, R.H., Mcneil, B.K., Groves, T.D.D., Donaldson, E.M.(1991), Isolation of a Y-chromosomal DNA probe capable of determining genetic sex in Chinook Salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 48, pp 1606-1612.
Devlin, R.H., Biagi, C.A. Smailus, D.E.(2001), Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 111, pp 43-58.
Devlin, R.H., Nagahama, Y.(2002), Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture, 208, pp 191-364.
Du, S.J., Devlin, R.H., Hew, C.L.(1993), Genomic structure of growth-hormone genes in Chinook Salmon (Oncorhynchus tshawytscha) - presence of 2 functional genes, Gh-I and Gh-Ii, and a male-specific pseudogene, Gh-Psi. DNA and Cell Biology, 12, pp 739-751.
Eldredge, N.(2001), The Sixth Extinction. American Institute of Biological Sciences. available at http://www.actionbioscience.org/newfrontiers/eldredge2.html#primer
Felsenstein, J.(1989), PHYLIP - Phylogeny inference package (Version 3.2). Cladistics ,5 pp 164-166.
Frankham, R., Ballou, J.D., Briscoe, D.A.(2002), Introduction to conservation genetics, Cambridge, UK:Cambridge University Press.
Giannasi, N., Thorpe, R.S., Malhotra, A.(2001), The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Molecular Ecology, 10, pp 419-426.
Groom, M.J., Meffe, G.K., Carroll C.R.(2006), Principles of conservation biology:third edition, Massachusetts, USA:Sunderland press.
Gwo, J.-C., Lin, X.-W., Gwo, H.-H., Wu, H.-C. and Lin, P.-W.(1996), The ultrastructure of Formosan landlocked salmon, Oncorhynchus masou formosanus, spermatozoon (Teleostei; Salmoniformes; Salmonidae), Journal of Submicroscopic Cytology & Pathology, 28, pp 33-40.
Gwo, J.-C., Ohia, H., Okuzawa, K., Wu, H.-C.(1999), Cryopreservation of sperm from the endangered Formosan landlocked salmon (Oncorhynchus masou formosanus), Theriogenology, 51, pp 569-582.
Healey, M., Kline, P. Tsai, C.-F.(2001), Saving the endangered Formosa landlocked salmon. Fisheries, 26, pp 6-14.
Hedmark, E., Flagstad, O., Segerstrom, P., Persson, J., Landa, A., Ellegren, H.(2004), DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conservation Genetics, 5, pp 405-410.
Hosoya, K., Chang, K.-H., Numachi, K.I.(1992), Character examination of the basibranchial teeth of the formosan salmon. Bulletin of the Institute of Zoology Academia Sinica, 31, pp 213-220.
IUCN.(2008), The IUCN red list of threatened species. Available at http://www.iucnredlist.org/static/stats
Kakehi, Y., Nakayama, K., Watanabe, K., Nishida, M.(2005), Inheritance of amplified fragment length polymorphism markers and their utility in population genetic analysis of Plecoglossus altivelis. Journal of Fish Biology, 66, pp 1529-1544.
Kimura, S.(1990), On the type specimens of Salmo macrostoma, Oncorhynchus ishikawae and O. rhodurud. Bulletin of the Institute of Zoology Academia Sinica, 29, pp 1–16.
Kumar, S., Tamura, K., Nei, M.(2004), MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, pp 150-163.
Lindsay, A.R., Belant, J.L.(2008), A simple and improved PCR-based technique for white-tailed deer (Odocoileus virginianus) sex identification. Conservation Genetics, 9, pp 443-447.
Liu, Z.J., Cordes, J.F.(2004), DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238, pp 1-37.
Lowe, A., Harris, S., Ashton, P.(2004), Ecological genetics: design, analysis, and application, Oxford, UK:Blackwell Publishing Press.
Lynch, M.(1990), The similarity index and DNA fingerprinting. Molecular Biology and Evolution , 7, pp 478-484.
Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P.(2003), Landscape genetics: combining landscape ecology and population genetics. Trends in ecology and evolution, 18, pp 189-197.
Moritz, C., Lavery, S., Slade, R.(1995), Using allele frequency and phylogeny to define units for conservation and management. in Nielsen, J.L. editor:Evolution and the aquatic ecosystem: defining unique units in population conservation, Maryland, USA:American Fisheries Society Symposium 17.
Mucci, N., Randi, E.(2007), Sex identification of Eurasian otter (Lutra lutra) non-invasive DNA samples using ZFX/ZFY sequences. Conservation Genetics, 8, pp 1479-1482.
Nagler, J.J., Bouma, J., Thorgaard, G.H., Dauble, D.D.(2001), High incidence of a male-specific genetic marker in phenotypic female Chinook salmon from the Columbia River. Environmental Health Perspectives, 109, pp 67-69.
Nakayama, I., Biagi, C.A., Koide, N., Devlin, R.H.(1999), Identification of a sex-linked GH pseudogene in one of two species of Japanese salmon (Oncorhynchus masou and O. rhodurus). Aquaculture, 173, pp 65-72.
Nei, M.(1973), Analysis of gene diversity in subdivided populations, Proceedings of the National Academy of Sciences, 70, pp 3321-3323.
Nei, M., Li, W.H.(1979), Mathematical model for studying genetic variation in terms of restriction endonucleases, Proceedings of the National Academy of Sciences, 76, pp 5269-5273.
Nei, M., Kumar, S.(2000), Molecular Evolution and Phylogenetics, Oxford, UK:Oxford University Press.
Numachi, K.I., Kobayashi, T., Chang, K.H., Lin, Y.S.(1990), Genetic identification and differentiation of Formosan salmon, Oncorhynchus masou formosanus, by restriction analysis of mitochondrial DNA. Bulletin of the Institute of Zoology Academia Sinica, 29 (3suppl), pp 61-72.
O'Hanlon, P.C., Peakall, R., Briese, D.T.(2000), A review of new PCR-based genetic markers and their utility to weed ecology. Weed Research, 40, pp 239-254.
Onozato, H.(1993), Direct production of the super male (YY) by androgenesis in the amago salmon. Biology International, Special Issue, 28, pp 69-71.
Parker, A., Kornfield, I.(1997), Evolution of the mitochondrial DNA control region in the Mbuna(Cichlidae)species flock of Lake Malawi, East Africa. Journal of Molecular Evolution, 45, pp 70-83.
Peakall, R., Smouse, P.E.(2006), GENALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Molecular Ecology Notes, 6, pp 288-295.
Reed, D.H., Briscoe, D.A., Frankham, R.(2002), Inbreeding and extinction: The effect of environmental stress and lineage. Conservation Genetics, 3, pp 301-307.
Rosel, P.E.(2003), PCR-based sex determination in Odontocete cetaceans. Conservation Genetics, 4, pp 647-649.
Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford K.H., Wannebo, A.V., Woolmer, G.(2002), The human footprint and the last of the wild. BioScience, 52(10), pp 891-904.
Spielman D., Brook, B.W., Briscoe, D.A., Frankham, R.(2004), Does inbreeding and loss of genetic diversity decrease disease resistance? Conservation Genetics, 5, pp 439-448.
Stokstad, E.(2007), Parasites from fish farms driving wild salmon to extinction. Science, 318, pp 1711.
Sullivan, J.P., Lavoue, S., Arnegard, M.E., Hopkins, C.D.(2004), AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea : Teleostei). Evolution, 58, pp 825-841.
Thorgaard, G.H.(1977), Heteromorphic sex chromosomes in male Rainbow trout. Science, 196, pp 900– 902.
Taniguchi, N.(2003), Genetic factors in broodstock management for seed production. Reviews in Fish Biology and Fisheries, 13, pp 177-185.
Ueda, T.(1983), Cytogenetical characters of 45 species in the Salmonid fishes. Bulletin of the Faculty of Education, Utsunomiya University, 34, pp 53–61.
Ueda, T., Ojima, Y., Naka, K.(1985), Chromosomal polymorphisms in the Biwa trout (Salmonidae)with an increase or decrease in constitutive heterochromatin. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 61(10), pp 483-485.
Ueda, T., Saio, R., Kobayashi, J.(1988), The origin of the genome of haploid Masu salmon and Rainbow trout recognized in abnormal embryos. Nippon Suisan Gakkaishi, 54, pp 619-625.
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M.(1995), AFLP - a new technique for DNA fngerprinting. Nucleic Acids Research, 23, pp 4407-4414.
Wang, Z.Y., Tsoi, K.H., Chu, K.H.(2004), Applications of AFLP technology in genetic and phylogenetic analysis of Penaeid shrimp. Biochemical Systematics and Ecology, 32, pp 399-407.
Watanabe, M., Lin, Y.(1985), Revision of the salmonid fish in Taiwan. Bulletin of the Biogeographical Society of Japan, 40, pp 75–85.
Woram, R.A., Gharbi, K., Sakamoto, T., Hoyheim, B., Holm, L.E., Naish, K., McGowan, C., Ferguson, M.M., Phillips, R.B., Stein, J., Guyomard, R., Cairney, M., Taggart, J.B., Powell, R., Davidson, W. Danzmann, R.G.(2003), Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Research, 13, pp 272-280.
Yue, G.H., Li, Y., Lim, L.C., Orban, L.(2004), Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture, 237, pp 89-102.
Zhang, Q., Nakayama, I., Fujiwara, A., Kobayashi, T., Oohara, I., Masaoka, T., Kitamura, S., Devlin, R.H.(2001), Sex identification by male-specific growth hormone pseudogene (GH-Psi) in Oncorhynchus masou complex and a related hybrid. Genetica, 111, pp 111-118.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔