(3.80.6.131) 您好!臺灣時間:2021/05/15 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:范家銑
研究生(外文):Chia-Hsian Fan
論文名稱:pkd2基因弱化對斑馬魚(Daniorerio)胚胎腎臟、心臟發育及水腫生成之影響
論文名稱(外文):The impacts of pkd2 gene knockdown on kidney, heart development and edema in zebrafish (Danio rerio)
指導教授:陸振岡
指導教授(外文):Jenn-Kan Lu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:腎臟心臟水腫多囊腎
外文關鍵詞:kidneyheartedemapolycystic kidney disease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Polycystin-2為細胞膜上可通透鈣離子之陽離子通道,由pkd2基因轉譯而成。在臨床醫學上發現當pkd2 基因發生突變會導致人類先天性遺傳疾病多囊性腎病 (autosomal dominate polycystic kidney disease, ADPKD),造成患者腎臟產生囊腫,嚴重者會導致腎衰竭進而死亡。本研究是利用斑馬魚 (Danio rerio) 作為實驗動物,研究pkd2 基因缺損對斑馬魚胚胎腎臟與心臟發育之影響。以半定量反轉錄聚合?連鎖反應 (semi-quantitative RT-PCR) 分析斑馬魚pkd2 基因在不同胚胎發育時期之表現情形,發現pkd2 基因在斑馬魚胚胎在1-細胞期已有表現,而在8hpf 至12hpf 表現量上升,其餘各時期表現量皆維持穩定直到48hpf。以RNA全覆式原位雜交 (RNA whole-mount in situ hybridization) 偵測斑馬魚pkd2 基因在斑馬魚胚胎12hpf 時開始廣泛表現於胚胎的全身,在16hpf 與30hpf 可觀察到pkd2 基因在胚胎頭部及軀幹均有表現,且多集中表現於頭部。40hpf、48hpf 及72hpf 可觀察到 pkd2 基因除了在頭部及軀幹有表現外在胚胎腎管也可偵測到pkd2 mRNA。利用專一性反意股寡核酸抑制pkd2基因的表現後,由組織切片可觀察到胚胎出現腎管囊腫。胚胎外觀上則出現包括腦水腫、心包膜水腫、腹部水腫以及軀幹彎曲等現象。進一步可觀察到胚胎心臟產生缺損且胚胎存活率降低。利用半定量RT-PCR 偵測pkd2 基因弱化胚胎的心臟發育相關標誌基因cmlc2、amhc、vmhc 及tbx5 mRNA 表現情形,結果顯示在24hpf、30hpf 及48hpf 胚胎之cmlc2、amhc、vmhc 及tbx5 mRNA 表現量均有顯著下降,顯示pkd2 基因弱化直接或間接影響心臟生成與發育。在腎臟功能測試實驗中,於斑馬魚胚胎48hpf、72hpf、96hpf 及120hpf 注射10 kD dextran-rhodamine 觀察到pkd2 基因弱化後72hpf、96hpf 及120hpf 胚胎體內螢光量有累積的現象。在改變體外滲透壓實驗中,將pkd2 基因弱化之胚胎在48hpf 由胚胎培養液中改浸泡入125 mOsm/L 或350 mOsm/L 濃度蔗糖溶液中,24 小時後發現浸泡125 mOsm/L 蔗糖溶液之胚胎水腫情形並無明顯改變。浸泡350 mOsm/L 蔗糖溶液之胚胎水腫現象則有輕微減少,但無法完全消除。以原子吸光儀測定胚胎體內離子含量實驗中,偵測到pkd2 基因弱化之胚胎魚體內鈉離子含量有顯著上升之現象。本研究結果亦證明pkd2 基因弱化後可導致斑馬魚胚胎腎臟衰竭,進而引發心臟異常及心腎綜合症 (cardiorenal symdrom)。而本研究結果亦顯示pkd2 基因弱化後所造成斑馬魚胚胎全身性不可逆性胚胎水腫現象可能是經由四種因素相包括:心臟發育缺損、腎臟功能受損、胚胎滲透壓失調及胚胎體內鈉離子失衡互作用所生成的結果。以斑馬魚DNA 晶片偵測pkd2 基因弱化後斑馬魚胚胎在48hpf 基因表現情形,本研究總共篩選43663 個基因,其中14309 個基因為有效基因,在有效基因中共挑選出了217 個基因表現量上升兩倍以上,112 個基因表現量被抑制兩倍以下。透過此一結果可了解pkd2 基因弱化後其他基因表現可能調控機制與作用路徑,做為日後找尋腎病生成原因之依據。本研究證明以斑馬魚建立pkd2 基因弱化及慢性腎臟衰竭模式的可行性。將來可應用於pkd2 基因與腎臟疾病之相關研究。
謝辭 i
中文摘要............................................... iii
英文摘要............................................... v
目錄................................................... vii
表目錄................................................. xii
圖目錄................................................. xiii
壹、前言................................................ 1
一、腎臟 (Kidney) .................................. 1
二、PKD2 基因及其所屬家族......................... 8
三、腎臟與心臟疾病發生之關連性..................... 12
四、心臟 (Heart).................................... 13
五、水腫 (edema) 形成與各種生理缺損之關係........... 18
六、應用DNA 微陣列晶片 (DNA microarray) 在斑馬魚胚胎發育上之研究................................ 21
七、本研究之目標................................... 23
貳、實驗材料............................................ 26
?、實驗方法............................................ 29
一、斑馬魚飼養與受精胚胎之收集及培育............... 29
1、斑馬魚之飼養............................... 29
2、斑馬魚受精卵之收集及培育................... 29
二、斑馬魚pkd2基因之選殖........................... 29
1、萃取斑馬魚胚胎之全量核糖核酸 (Total RNA) ... 29
2、核糖核酸電泳分析........................... 30
3、引子 (Primer) 設計.......................... 31
4、反轉錄?反應 (Reverse Transcription) .......... 31
5、聚合?連鎖反應 (Polymerase Chain Reaction, PCR) ................................... 32
6、膠體萃取 (Gel Extraction) .................... 32
7、勝任細胞 (Competent Cell) 製備............... 33
8、接合作用 (Ligation).......................... 34
9、質體轉型作用 (Transformation) ................ 34
10、篩選 (Selection) ............................ 34
11、小量質體製備 (Mini-preparation).............. 35
12、分析與定序 (Auto-sequence) ................. 35
三、斑馬魚pkd2 RNA 在不同發育時期之定量分析....... 36
1、萃取斑馬魚胚胎之全量核糖核酸 (Total RNA) ... 36
2、半定量反轉錄?反應 (Semi-quantitative RT-PCR). 37
四、RNA全覆式原位雜交 (RNA Whole-mount in situ Hybridization)偵測斑馬魚pkd2 基因之表現位置...... 37
1、斑馬魚胚胎之收集、固定與保存............... 37
2、核醣核酸探針 (RNA probe) 之製備............ 38
3、抗DIG抗體之預吸附 (Preabsorption) 反應...... 40
4、RNA全覆式原位雜交 (RNA Whole-mount in situ Hybridization) ............................. 41
五、顯微注射 (Microinjection)......................... 44
1、訂購顯微注射用pkd2 專一性反意股寡核酸 (Morpholino Antisense Oligos, MO) ........... 44
2、顯微注射 (Microinjection) pkd2 專一性反意股寡核酸...................................... 44
六、利用pkd2 專一性反意股寡核酸抑制綠螢光蛋白表現............................................ 45
1、pkd2-GFP 載體構築.......................... 45
2、顯微注射 (Microinjection) pkd2 專一性反意股寡核酸與 pkd2-GFP 載體...................... 47
七、利用pkd2 專一性反意股寡核酸弱化pkd2 基因外顯子 (Exon) 表現................................... 47
1、顯微注射pkd2 專一性反意股寡核酸........... 47
2、檢測pkd2 專一性反意股寡核酸弱化pkd2 基因外顯子表現胚胎與正常胚胎mRNA 表現差異..... 48
八、胚胎發育觀察與結果之計算方式................... 48
九、組織切片觀察弱化pkd2 基因表現後對腎臟結構之影響............................................ 49
1、 斑馬魚胚胎之收集、固定與保存.............. 49
2、胚胎脫水與浸潤............................. 50
3、胚胎包埋 (Embedding) ....................... 50
4、切片 (Section) .............................. 50
5、切片染色................................... 51
十、以心臟發育相關之標誌基因,研究弱化pkd2 基因表現後對心臟發育之影響............................ 51
1、萃取斑馬魚胚胎之全量核糖核酸 (Total RNA) ... 51
2、半定量反轉錄聚合?連鎖反應 (Semi-quantitative RT-PCR) .................................. 51
十一、注射10-kD rhodamine-dextrane 觀察弱化pkd2 基因表現後對腎臟功能之影響....................... 52
1、訂購注射用10-kD rhodamine-dextrane........... 52
2、顯微注射10-kD rhodamine-dextrane............. 52
十二、利用浸泡蔗糖溶液觀察改變環境滲透壓對胚胎水腫發生之影響................................... 52
十三、利用原子吸光儀 (Atomic Absorption) 偵測pkd2 基因弱化後胚胎體內鈉離子變化情形............... 53
十四、運用斑馬魚晶片 (Danio rerio DNA Microarray) 探討pkd2 基因弱化後心臟相關基因的表現情形........ 53
1、萃取斑馬魚胚胎之全量核糖核酸............... 53
2、反轉錄?反應 (Reverse Transcription) .......... 53
3、轉錄作用及標定螢光染劑 (Transcription and Coupling with Fluorescent Dye) ................ 53
4、純化cRNA (Purifying cRNA) .................. 54
5、雜交 (Hybridization) 前處理.................. 54
6、雜交反應 (Hybridization) ..................... 54
7、晶片洗滌 (Microarray Wash) .................. 54
8、晶片掃描 (Scanning) ......................... 55
9、晶片結果分析 (data analysis) .................. 55
肆、結果................................................ 56
一、斑馬魚pkd2 基因在不同胚胎發育時期之表現模式.... 56
二、RNA 全覆式原位雜交 (RNA whole-mount in situ hybridization) 偵測斑馬魚pkd2 基因在不同胚胎發育時期之表現位置................................... 56
三、利用pkd2 專一性反意股寡核酸 (Morpholino antisense oligos,MO) 顯微注射 (microinjection) 抑制pkd2 蛋白表現及利用pkd2 專一性反意股寡核酸弱化pkd2 基因外顯子 (exon) 表現.............................. 57
四、利用pkd2-MO 弱化pkd2 基因表現後,觀察斑馬魚胚胎不同發育時期之活存率......................... 57
五、組織切片觀察弱化pkd2 基因表現後對腎臟結構之影響............................................. 58

六、利用pkd2 專一性寡核酸弱化pkd2 基因表現後,觀察斑馬魚胚胎缺損情形之比較....................... 58
七、注射不同pkd2 專一性反意股寡核酸弱化pkd2 基因表現後,計算斑馬魚胚胎不同發育時期之存活率及外觀缺損之比較....................................... 60
八、以心臟發育相關之標誌基因,研究弱化pkd2 基因表現後對心臟發育之影響............................. 61
九、注射10-kD rhodamine-dextrane 觀察弱化pkd2 基因表現後對腎臟功能之影響.......................... 61
十、利用浸泡蔗糖溶液觀察改變環境滲透壓對胚胎水腫發生之影響................................... 62
十一、利用原子吸光儀 (Atomic Absorption) 偵測pkd2 基因弱化後胚胎體內鈉離子變化情形............... 63
十二、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討pkd2 基因弱化後心臟相關基因的表現情形........ 63
伍、討論................................................ 65
一、斑馬魚pkd2 基因在不同胚胎發育時期之表現模式.... 65
二、RNA 全覆式原位雜交 (RNA whole-mount in situ hybridization) 斑馬魚pkd2 基因在不同胚胎發育時期之表現位置....................................... 65
三、利用pkd2 專一性反意股寡核酸 (Morpholino antisense oligos, MO) 顯微注射 (microinjection) 抑制pkd2 蛋白表現........................................... 66
四、利用pkd2-MO 弱化pkd2 基因表現後,觀察斑馬魚胚胎不同發育時期之活存率......................... 67
五、組織切片觀察弱化pkd2 基因表現後對腎臟發育之影響............................................. 67
六、利用pkd2 專一性寡核酸弱化pkd2 基因表現後,觀察斑馬魚胚胎發育異常情形之比較................... 68
七、設計並注射不同pkd2 專一性反意股寡核酸弱化pkd2 基因表現後,計算斑馬魚胚胎不同發育時期之存活率及外觀缺損之比較................................. 70
八、以心臟發育相關之標誌基因,研究弱化pkd2 基因表現後對心臟發育之影響............................. 70
九、注射10-kD rhodamine-dextrane 觀察弱化pkd2 基因表現後對腎臟功能之影............................. 71
十、利用浸泡蔗糖溶液觀察改變環境滲透壓對胚胎水腫發生之影響............................. 73
十一、pkd2 基因弱化對斑馬魚胚胎體內離子平衡 (ionic balance) 之影響............................... 74
十二、運用斑馬魚晶片 (Danio rerio DNA microarray) 探討pkd2 基因弱化後心臟相關基因的表現情形........ 74
陸、參考文獻............................................ 79
圖表................................................... 91
附錄................................................... 124
朱曦林。2007。tbx5基因對斑馬魚心臟肌肉生成之影響及應用生長相關荷爾蒙改善心臟缺損之研究。碩士論文。國立台灣海洋大學水產養殖研究所。
李玉琪。2005。Tbx5基因對斑馬魚胚胎時期心臟發育之影響及心臟缺 損模式之建立。碩士論文。國立台灣海洋大學水產養殖研究所。
肖靜、高建東、何立群。2008。多囊腎的研究現狀及進展。CJITWN 9.
郭卜樂。2008。水腫。中國心理熱線 http://www.zgxl.net
陳玉、溫玉芹、劉長林。2002。以下肢水腫為首發表現的成人型多囊腎1例報告。山東省萊鋼淄博錨鏈有限公司醫院 。中華醫學研究雜誌。
黃玉芳。2006。病理學。上海科學技術出版社
薛招芬。2008。應用生長相關激素改善tbx5 弱化所造成的心臟缺損及以cDNA 晶片探討tbx5 弱化後斑馬魚胚胎心臟相關基因的表現模式。
Ader, T., Norel, R., Levoci, L., Rogler, L.E., 2006. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts. Mech Dev 123, 177-194.
Adrian S. Woolf, P.J.D.W., Monika M. Hermanns, and Simon J. M. Welham, 2003. Maldevelopment of the Human Kidney and Lower Urinary Tract: An Overview. Academic Press, Inc., USA.
Anderson, R.H., Webb, S., Brown, N.A., 1998. Defective lateralisation in children with congenitally malformed hearts. Cardiol Young 8, 512-531.
Augustin, A., Spenlehauer, C., Dumond, H., Menissier-De Murcia, J., Piel, M., Schmit, A.C., Apiou, F., Vonesch, J.L., Kock, M., Bornens, M., De Murcia, G., 2003. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 116, 1551-1562.
Bahary, N., 2005. Tales from the deep: reeling in renal failure. Am J Physiol Renal Physiol 288, F921-922.
Balfour, F.M., 1882. On the nature of the organe in adult teleosteans and gonids, which is usually regarded as the head-kidney or pronephros. Quart. J. Micr. Sci. 22.
Bard, J., 2003. The Metanephros. Academic Press, Inc., USA.
Barton, P.J., Robert, B., Cohen, A., Garner, I., Sassoon, D., Weydert, A., Buckingham, M.E., 1988. Structure and sequence of the myosin alkali light chain gene expressed in adult cardiac atria and fetal striated muscle. J Biol Chem 263, 12669-12676.
Benarroch, E.E., 2008. TRP channels: functions and involvement in neurologic disease. Neurology 70, 648-652.
Berdougo, E., Coleman, H., Lee, D.H., Stainier, D.Y., Yelon, D., 2003. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 130, 6121-6129.
Bisgrove, B.W., Snarr, B.S., Emrazian, A., Yost, H.J., 2005. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis. Dev Biol 287, 274-288.
Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., Wobus, A.M., 2002. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 91, 189-201.
Brasier, J.L., Henske, E.P., 1997. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest 99, 194-199.
Breunig, J.J., Sarkisian, M.R., Arellano, J.I., Morozov, Y.M., Ayoub, A.E., Sojitra, S., Wang, B., Flavell, R.A., Rakic, P., Town, T., 2008. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci U S A 105, 13127-13132.
Briggs, A.P., Fowell, D.M., et al., 1948. Renal and circulatory factors in the edema formation of congestive heart failure. J Clin Invest 27, 810-817.
Brown, E.A., Markandu, N.D., Roulston, J.E., Jones, B.E., Squires, M., MacGregor, G.A., 1982. Is the renin-angiotensin-aldosterone system involved in the sodium retention in the nephrotic syndrome? Nephron 32, 102-107.
Bruneau, B.G., 2002a. Mouse models of cardiac chamber formation and congenital heart disease Mouse Models of Human Diseases.
Bruneau, B.G., 2002b. Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90, 509-519.
Cantiello, H.F., Montalbetti, N., Timpanaro, G.A., Gonzalez-Perrett, S., 2004. Polycystin-2 as a signal transducer. Adv Exp Med Biol 559, 235-244.
Chang, M.Y., Fang, J.T., Huang, C.C., Wu, I.W., Wu Chou, Y.H., 2005. Mutations of the PKD2 gene in Taiwanese patients with autosomal dominant polycystic kidney disease. Ren Fail 27, 95-100.
Chen, J.N., Fishman, M.C., 1996. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809-3816.
Chen, S., Wang, Q.L., Xu, S., Liu, I., Li, L.Y., Wang, Y., Zack, D.J., 2002. Functional analysis of cone-rod homeobox (CRX) mutations associated with retinal dystrophy. Hum Mol Genet 11, 873-884.
Chen, W.C., Tzeng, Y.S., Li, H., 2008. Gene expression in early and progression phases of autosomal dominant polycystic kidney disease. BMC Res Notes 1, 131.
Cheng, L., Guo, X.F., Yang, X.Y., Chong, M., Cheng, J., Li, G., Gui, Y.H., Lu, D.R., 2006. Delta-sarcoglycan is necessary for early heart and muscle development in zebrafish. Biochem Biophys Res Commun 344, 1290-1299.
Cho, S., Dawson, G., 2000. Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. J Neurochem 74, 1478-1488.
de Groot, I.J., Lamers, W.H., Moorman, A.F., 1989. Isomyosin expression patterns during rat heart morphogenesis: an immunohistochemical study. Anat Rec 224, 365-373.
de Jong, F., Geerts, W.J., Lamers, W.H., Los, J.A., Moorman, A.F., 1987. Isomyosin expression patterns in tubular stages of chicken heart development: a 3-D immunohistochemical analysis. Anat Embryol (Berl) 177, 81-90.
Drsvenkatesan., S., 2008. Why some cardiac failure patients never develop edema and remain dry
Drummond, I., 2003. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol 13, 357-365.
Drummond, I.A., 2000. The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol 14, 428-435.
Drummond, I.A., Majumdar, A., Hentschel, H., Elger, M., Solnica-Krezel, L., Schier, A.F., Neuhauss, S.C., Stemple, D.L., Zwartkruis, F., Rangini, Z., Driever, W., Fishman, M.C., 1998. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125, 4655-4667.
Dunwoodie, S.L., 2007. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Semin Cell Dev Biol 18, 54-66.
Fox, H., 1962a. A study of the evolution of the amphibian and dipnoan pronephros by an analysis of its relationship with the anterior spinal nerves. Proc. Zool. Soc. Lond. 138, 225-256.
Fox, H., 1962b. Degeneration of the remaining pronephros of Rana temporaria after unilateral pronephrectomy. J. Embryol. Exp. Morphol. 10, 224–230.
Francis, G.S., 2008. Annual NHLI/RBHT Paul Wood cardiovascular lecture 2008.
George, K.M., Leonard, M. W., Roth, M. E., Lieuw, K. H., Kioussis, D., Grosveld, F., and Engel, J. D., 1994. Embryonic expression and cloning of the murine GATA-3 gene. Development 120(9), 2673-2686.
Gilbert, S.F., 2006. Developmental Biology. Sinauer Associates Inc., USA, 460-468 pp.
Grabowski, C.T., 1963. Teratogenic Significance Of Ionic And Fluid Imbalances. Science 142, 1064-1065.
Grimm, D.H., Karihaloo, A., Cai, Y., Somlo, S., Cantley, L.G., Caplan, M.J., 2006. Polycystin-2 regulates proliferation and branching morphogenesis in kidney epithelial cells. J Biol Chem 281, 137-144.
Hanaoka, K., Qian, F., Boletta, A., Bhunia, A.K., Piontek, K., Tsiokas, L., Sukhatme, V.P., Guggino, W.B., Germino, G.G., 2000. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990-994.
Harris, P.C., 1999. Autosomal dominant polycystic kidney disease: clues to pathogenesis. Hum Mol Genet 8, 1861-1866.
Harris, P.C., Torres, V.E., 2008. Polycystic Kidney Disease. Annu Rev Med.
Harvey, R.P., 1998. Cardiac looping--an uneasy deal with laterality. Semin Cell Dev Biol 9, 101-108.
Hayashi, T., Mochizuki, T., Reynolds, D.M., Wu, G., Cai, Y., Somlo, S., 1997. Characterization of the exon structure of the polycystic kidney disease 2 gene (PKD2). Genomics 44, 131-136.
Hayden, P.S., El-Meanawy, A., Schelling, J.R., Sedor, J.R., 2003. DNA expression analysis: serial analysis of gene expression, microarrays and kidney disease. Curr Opin Nephrol Hypertens 12, 407-414.
Hentschel, D.M., Park, K.M., Cilenti, L., Zervos, A.S., Drummond, I., Bonventre, J.V., 2005. Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 288, F923-929.
Hill, A.J., Bello, S.M., Prasch, A.L., Peterson, R.E., Heideman, W., 2004. Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicol Sci 78, 78-87.
Hirst, R.A., Rutman, A., Sikand, K., Andrew, P.W., Mitchell, T.J., O'Callaghan, C., 2000. Effect of pneumolysin on rat brain ciliary function: comparison of brain slices with cultured ependymal cells. Pediatr Res 47, 381-384.
Horster, M.F., Braun, G.S., Huber, S.M., 1999. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79, 1157-1191.
Hostetter, C.L., Sullivan-Brown, J.L., Burdine, R.D., 2003. Zebrafish pronephros: a model for understanding cystic kidney disease. Dev Dyn 228, 514-522.
Hsu, Y.J., Hoenderop, J.G., Bindels, R.J., 2007. TRP channels in kidney disease. Biochim Biophys Acta 1772, 928-936.
Hu, N., Sedmera, D., Yost, H.J., Clark, E.B., 2000. Structure and function of the developing zebrafish heart. Anat Rec 260, 148-157.
Kari, G., Rodeck, U., Dicker, A.P., 2007. Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82, 70-80.
Kellum, J.A., Bellomo, R., Ronco, C., 2008. Definition and classification of acute kidney injury. Nephron Clin Pract 109, c182-187.
Kimmel CB, W.R., Schilling TF., 1990. Origin and organization of the zebrafish fatemap. Development 108, 581-594.
Klabunde, R.E., 2007a. Tissue Edema and General Principles of Transcapillary Fluid Exchange.
Klabunde, R.E., 2007b. Physical Factors that Determine Capillary Fluid Exchange.
Kottgen, M., 2007. TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 1772, 836-850.
Kottgen, M., Benzing, T., Simmen, T., Tauber, R., Buchholz, B., Feliciangeli, S., Huber, T.B., Schermer, B., Kramer-Zucker, A., Hopker, K., Simmen, K.C., Tschucke, C.C., Sandford, R., Kim, E., Thomas, G., Walz, G., 2005. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. Embo J 24, 705-716.
Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., Ehrlich, B.E., Somlo, S., 2002. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 4, 191-197.
Kratz, E., Eimon, P.M., Mukhyala, K., Stern, H., Zha, J., Strasser, A., Hart, R., Ashkenazi, A., 2006. Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ 13, 1631-1640.
Kubalak, S.W., Miller-Hance, W.C., O'Brien, T.X., Dyson, E., Chien, K.R., 1994. Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269, 16961-16970.
Labastie, M.C., Catala, M., Gregoire, J. M., and Peault, B., 1995. The GATA-3 gene is expressed during human kidney embryogenesis. Kidney Int. 47(6), 1597-1603.
Lasic, L.B., DeVita, M.V., Spiegel, P.J., Marino, N.D., Mellow, E., Michelis, M.F., 2004. Refractory hypotension and edema caused by right atrial compression in a woman with polycystic kidney disease. Am J Kidney Dis 43, e13-17.
Li, W., Li, Y., 2006. Regulation of dHAND protein expression by all-trans retinoic acid through ET-1/ETAR signaling in H9c2 cells. J Cell Biochem 99, 478-484.
Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z., Peng, J., 2003. 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res 13, 455-466.
Lyons, G.E., Schiaffino, S., Sassoon, D., Barton, P., Buckingham, M., 1990. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol 111, 2427-2436.
Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L., Harvey, R.P., 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9, 1654-1666.
Mariani, L., Beaudry, C., McDonough, W.S., Hoelzinger, D.B., Kaczmarek, E., Ponce, F., Coons, S.W., Giese, A., Seiler, R.W., Berens, M.E., 2001. Death-associated protein 3 (Dap-3) is overexpressed in invasive glioblastoma cells in vivo and in glioma cell lines with induced motility phenotype in vitro. Clin Cancer Res 7, 2480-2489.
Markowitz, G.S., Cai, Y., Li, L., Wu, G., Ward, L.C., Somlo, S., D'Agati, V.D., 1999. Polycystin-2 expression is developmentally regulated. Am J Physiol 277, F17-25.
Mathavan, S., Lee, S.G., Mak, A., Miller, L.D., Murthy, K.R., Govindarajan, K.R., Tong, Y., Wu, Y.L., Lam, S.H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E.T., Lufkin, T., 2005. Transcriptome analysis of zebrafish embryogenesis using microarrays. PLoS Genet 1, 260-276.
Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S.L., Veldhuisen, B., Saris, J.J., Reynolds, D.M., Cai, Y., Gabow, P.A., Pierides, A., Kimberling, W.J., Breuning, M.H., Deltas, C.C., Peters, D.J., Somlo, S., 1996. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339-1342.
Nauli, S.M., Alenghat, F.J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A.E., Lu, W., Brown, E.M., Quinn, S.J., Ingber, D.E., Zhou, J., 2003. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33, 129-137.
Naumovski, L., Cleary, M.L., 1996. The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M. Mol Cell Biol 16, 3884-3892.
Nilius, B., 2007. TRP channels in disease. Biochim Biophys Acta 1772, 805-812.
Nilius, B., Voets, T., Peters, J., 2005. TRP channels in disease. Sci STKE 2005, re8.
Nils Damann, T.V., Bernd Nilius, 2008. TRPs in Our Senses. Current Biology 18, R880-R889.
O'Brien, T.X., Lee, K.J., Chien, K.R., 1993. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci U S A 90, 5157-5161.
Obara, T., Mangos, S., Liu, Y., Zhao, J., Wiessner, S., Kramer-Zucker, A.G., Olale, F., Schier, A.F., Drummond, I.A., 2006. Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol 17, 2706-2718.
Obermuller, N., Gallagher, A.R., Cai, Y., Gassler, N., Gretz, N., Somlo, S., Witzgall, R., 1999. The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol 277, F914-925.
Pei, Y., Watnick, T., He, N., Wang, K., Liang, Y., Parfrey, P., Germino, G., St George-Hyslop, P., 1999. Somatic PKD2 mutations in individual kidney and liver cysts support a "two-hit" model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J Am Soc Nephrol 10, 1524-1529.
Peter D. Vize, T.J.C., and John B. Wallingford, 2003. Induction, Development, and Physiology of the Pronephric Tubules. Elsevier Science, USA.
Plageman, T.F., Jr., Yutzey, K.E., 2006. Microarray analysis of Tbx5-induced genes expressed in the developing heart. Dev Dyn 235, 2868-2880.
Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Vogelstein, B., 1997. A model for p53-induced apoptosis. Nature 389, 300-305.
Qian, F., Zhen, F., Ong, C., Jin, S.W., Meng Soo, H., Stainier, D.Y., Lin, S., Peng, J., Wen, Z., 2005. Microarray analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev Dyn 233, 1163-1172.
Ritz, E., 2006. Heart and kidney: fatal twins? Am J Med 119, S31-39.
Ronco, C., Haapio, M., House, A.A., Anavekar, N., Bellomo, R., 2008. Cardiorenal syndrome. J Am Coll Cardiol 52, 1527-1539.
Rosenblum, N.D., 2008. Developmental biology of the human kidney. Semin Fetal Neonatal Med 13, 125-132.
Rouleau, M., McDonald, D., Gagne, P., Ouellet, M.E., Droit, A., Hunter, J.M., Dutertre, S., Prigent, C., Hendzel, M.J., Poirier, G.G., 2007. PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery. J Cell Biochem 100, 385-401.
Ryan, K., Chin, A.J., 2003. T-box genes and cardiac development. Birth Defects Res C Embryo Today 69, 25-37.
Sainio, K., 2003. Development of the Mesonephric Kidney. Academic Press, Inc., USA.
Sanna-Cherchi, S., Caridi, G., Weng, P.L., Scolari, F., Perfumo, F., Gharavi, A.G., Ghiggeri, G.M., 2007. Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 22, 1675-1684.
Sarnak, M.J., Levey, A.S., Schoolwerth, A.C., Coresh, J., Culleton, B., Hamm, L.L., McCullough, P.A., Kasiske, B.L., Kelepouris, E., Klag, M.J., Parfrey, P., Pfeffer, M., Raij, L., Spinosa, D.J., Wilson, P.W., 2003. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108, 2154-2169.
Sater, A.K., Jacobson, A.G., 1989. The specification of heart mesoderm occurs during gastrulation in Xenopus laevis. Development 105, 821-830.
Sater, A.K., Jacobson, A.G., 1990. The restriction of the heart morphogenetic field in Xenopus laevis. Dev Biol 140, 328-336.
Schedl, A., 2007. Renal abnormalities and their developmental origin. Nat Rev Genet 8, 791-802.
Schmitz, C., Gotthardt, M., Hinderlich, S., Leheste, J.R., Gross, V., Vorum, H., Christensen, E.I., Luft, F.C., Takahashi, S., Willnow, T.E., 2000. Normal blood pressure and plasma renin activity in mice lacking the renin-binding protein, a cellular renin inhibitor. J Biol Chem 275, 15357-15362.
Schottenfeld, J., Sullivan-Brown, J., Burdine, R.D., 2007. Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw. Development 134, 1605-1615.
Schroeder, H.A., 1950. Studies on Congestive Circulatory Failure III. The Relation of Edema to Urinary Chlorides. circulation I 481-495.
Sharon Mulroy, C.B., Paul Winyard, and Richard Sandford, 2003. Cystic Renal Diseases. Academic Press, Inc., USA.
Smith, C., and MacKay, S., 1991. Morphological development and fate of the mouse mesonephros. J. Anat. 174, 171-184.
Srivastava, D., 1999. HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med 9, 11-18.
Stainier, D.Y., 2001. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39-48.
Stainier, D.Y., Fishman, M.C., 1992. Patterning the zebrafish heart tube: acquisition of anteroposterior polarity. Dev Biol 153, 91-101.
Stainier, D.Y., Lee, R.K., Fishman, M.C., 1993. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31-40.
Stainier, D.Y., Fouquet, B., Chen, J.N., Warren, K.S., Weinstein, B.M., Meiler, S.E., Mohideen, M.A., Neuhauss, S.C., Solnica-Krezel, L., Schier, A.F., Zwartkruis, F., Stemple, D.L., Malicki, J., Driever, W., Fishman, M.C., 1996. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285-292.
Streets, A.J., Moon, D.J., Kane, M.E., Obara, T., Ong, A.C., 2006. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet 15, 1465-1473.
Sultana, N., Nag, K., Hoshijima, K., Laird, D.W., Kawakami, A., Hirose, S., 2008. Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proc Natl Acad Sci U S A 105, 4763-4768.
Sun, Z., Amsterdam, A., Pazour, G.J., Cole, D.G., Miller, M.S., Hopkins, N., 2004. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085-4093.
Sutters, M., 2006. The pathogenesis of autosomal dominant polycystic kidney disease. Nephron Exp Nephrol 103, e149-155.
Torres, V.E., Harris, P.C., 2006. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. Nat Clin Pract Nephrol 2, 40-55; quiz 55.
Torres, V.E., Harris, P.C., Pirson, Y., 2007. Autosomal dominant polycystic kidney disease. Lancet 369, 1287-1301.
Tsiokas, L., Kim, S., Ong, E.C., 2007. Cell biology of polycystin-2. Cell Signal 19, 444-453.
Tu, C.T., Yang, T.C., Tsai, H.J., 2009. Nkx2.7 and Nkx2.5 function redundantly and are required for cardiac morphogenesis of zebrafish embryos. PLoS One 4, e4249.
Venkatachalam, K., Montell, C., 2007. TRP channels. Annu Rev Biochem 76, 387-417.
Vieira, M.L., Vasconcellos, S.A., Goncales, A.P., de Morais, Z.M., Nascimento, A.L., 2009. "Plasminogen acquisition and activation at the surface of Leptospira lead to fibronectin degradation". Infect Immun.
Vize, P.D., 2003. Introduction: Embryonic Kidneys and Other Nephrogenic Models. Elsevier Science, USA.
Vize, P.D., Seufert, D.W., Carroll, T.J., Wallingford, J.B., 1997. Model systems for the study of kidney development: use of the pronephros in the analysis of organ induction and patterning. Dev Biol 188, 189-204.
Watanabe, H., Murakami, M., Ohba, T., Takahashi, Y., Ito, H., 2008. TRP channel and cardiovascular disease. Pharmacol Ther 118, 337-351.
Wessels, A., Vermeulen, J.L., Viragh, S., Kalman, F., Lamers, W.H., Moorman, A.F., 1991. Spatial distribution of "tissue-specific" antigens in the developing human heart and skeletal muscle. II. An immunohistochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec 229, 355-368.
Wilson, D.W., Whiteheart, S.W., Wiedmann, M., Brunner, M., Rothman, J.E., 1992. A multisubunit particle implicated in membrane fusion. J Cell Biol 117, 531-538.
Wintour, E.M., Butkus, A., Earnest, L., and Pompolo, S., 1996. The erythropoietin gene is expressed strongly in the mammalian mesonephric kidney. Blood 88, 3349-3353.
Winyard, P., Chitty, L.S., 2008. Dysplastic kidneys. Semin Fetal Neonatal Med 13, 142-151.
Witzgall, R., 2007. TRPP2 channel regulation. Handb Exp Pharmacol, 363-375.
Wu, G., Markowitz, G.S., Li, L., D'Agati, V.D., Factor, S.M., Geng, L., Tibara, S., Tuchman, J., Cai, Y., Park, J.H., van Adelsberg, J., Hou, H., Jr., Kucherlapati, R., Edelmann, W., Somlo, S., 2000. Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nat Genet 24, 75-78.
Yelon, D., 2001. Cardiac patterning and morphogenesis in zebrafish. Dev Dyn 222, 552-563.
Yelon, D., Stainier, D.Y., 1999. Patterning during organogenesis: genetic analysis of cardiac chamber formation. Semin Cell Dev Biol 10, 93-98.
Yelon, D., Ticho, B., Halpern, M.E., Ruvinsky, I., Ho, R.K., Silver, L.M., Stainier, D.Y., 2000. The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573-2582.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊