(3.235.236.13) 您好!臺灣時間:2021/05/15 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡伊娟
研究生(外文):Yi-Chuan Tsai
論文名稱:開發高靈敏及分析多重樣品之膜蛋白體定量平台
論文名稱(外文):Highly Sensitive and Multiplexed Quantitation Strategies for Membrane Proteomics: Application in Arabidopsis and Human Embryonic Stem Cells
指導教授:陳玉如陳玉如引用關係
指導教授(外文):Yu-Ju Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:188
中文關鍵詞:膜蛋白質體學免標定定量法
外文關鍵詞:membrane proteomicslabel-free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
許多膜蛋白質是重要的藥物分子標的,發展有效方法針對疾病相關膜蛋白質作定性以及定量分析一直是研究的重心。為了達到高靈敏、快速且同時針對多組樣品作膜蛋白質體定量分析的目的,我們發展了一個 SEMI 概念為基礎的免標定 (Label-free) 定量膜蛋白平台。此平台具有以下幾點優點:(1)針對膜蛋白進行大規模定性分析;(2)可同時定量分析多組樣品;(3)可分析少量的樣品量。在論文的第一部分著重在新定量策略的方法學開發及評估執行的可行性,並與同位素標定定量法之一的 iTRAQ 標定法進行比較。在 label-free (免標定定量法) 中,使用 106 個細胞即可高準確的定量 376 個蛋白質 (在 log2 的模式中,mean±SD = -0.03±0.29)。
本研究的第二部分,我們將 label-free 與 iTRAQ 兩種定量法應用到兩種生物系統。在阿拉伯芥系統之應用中,針對阿拉伯芥 pho2 突變植株與 wild-type (野生型) 的植株其根部的膜蛋白進行分析,實驗結果建立目前最大規模的阿拉伯芥膜蛋白質體資料庫。近來有研究指出 PHO2 (UBC24; a ubiquitin-conjugating E2 enzyme) 在阿拉伯芥調控磷酸鹽吸收及運送中扮演關鍵性的角色,然而 PHO2 下游之訊號調控路徑仍然未知。由於 PHO2 的訊號調控路徑中膜蛋白易參與 ubiquitin (泛素) 調控的蛋白質水解反應,在此研究中,我們應用定量膜蛋白體學來探討 PHO2 下游可能作用之標的。利用本實驗室先前所發展之 gel-assisted digestion (膠體輔助蛋白質水解方法) 結合 iTRAQ 定量法、2D LC-MS/MS (二維液相層析串聯質譜) 技術的定量策略,針對兩種不同的植物生長系統,總計定量了 2795 個蛋白質,而在其中相對於 wild-type 植株的蛋白質,有 245 個蛋白質在阿拉伯芥 pho2 突變植株上表現量有變化。相較於文獻所載,在阿拉伯芥中,我們所鑑定到的 1519 個膜蛋白質是目前最豐富的一組數據。值得探討的是在此 245 個有變化的蛋白質中,其中有 65 個蛋白質為 transporter (轉運蛋白)。其中,Pi transporter traffic facilitator 1 (PHF1) 與許多 PHT1 家族的 Pi transporters (PHT1;1, PHT1;2, PHT1;3 and PHT1;4) 在 pho2 突變植株的根中表現量是上升的,顯示其可能在 pho2 突變植株中扮演增加磷酸鹽吸收及運送的角色。此外,在西方墨點法之實驗結果顯示 PHF1、PHT1;1、PHT1;2、PHT1;3 和 PHT1;4 此五種蛋白質之表現與質譜分析鑑定結果吻合,且從 phf1 基因突變的研究結果也可證實 PHF1 與 PHT1 家族在 PHO2 下游的角色。此研究有助於探討植物之吸收作用及其調控磷酸鹽的分子機制。
在幹細胞系統之應用中, 本研究著重於對人類胚胎幹細胞的膜蛋白質體分化過程之探討。同時進行利用 SEMI 概念為基礎的 label-free 與 iTRAQ 定量法分析,比對胚胎幹細胞分化前及分化後之膜蛋白表現量。結果顯示,在 label-free 定量法中,共計鑑定出 981 個蛋白質,其中可定量 867 個蛋白質;而在 iTRAQ 定量法中,則可鑑定出 3369 個蛋白質,當中可定量 2734 個蛋白質。在不同表現量之蛋白質中, label-free 與 iTRAQ 定量法的結果進行分析比較後發現其變化的趨勢為一致,顯示本研究發展之定量方法與定量策略確實能有效的尋找出幹細胞的細胞表面標的蛋白,而此些細胞表面標的蛋白可能應用在人類胚胎幹細胞以分離其特定分化時期之細胞,並幫助釐清幹細胞自我更新及分化之機制。
Many membrane proteins are implicated in particular diseases states and often are attractive therapeutic targets. Comprehensive and quantitative profiles of membrane proteins facilitate our understanding of their roles in regulating biological processes and in cellular signaling. Towards highly sensitive, multiplexed, and robust quantitation of the membrane proteome, we aimed to develop a SEMI-based label-free quantitative membrane proteomics strategy capable of (1) comprehensive identification of large number of membrane proteins, (2) multiplexed analysis of multiple samples, and (3) requirements for limited amounts of starting material. The first part of study focuses on the methodology development and performance evaluation of the new strategy and comparison with isotope labeling method. Using this quantitation approach, 376 proteins can be quantified from 106 cells with high quantitation accuracy and reasonable standard deviation (-0.03±0.29 in log2 scale).
In the second part of thesis, we applied this new label-free strategy and our previously developed iTRAQ-based quantitation method to two biology systems. The first example presents the most comprehensive proteomics delineation of membrane proteome from the roots of wild-type Arabidopsis and pho2 mutant. Recent advances indicate that PHO2, a ubiquitin-conjugating E2 enzyme (UBC24), plays a crucial role in regulating phosphate (Pi) uptake and translocation in Arabidopsis thaliana; however, the molecular mechanism downstream of the PHO2 signaling pathway remain unknown. Because membrane proteins subjected to ubiquitin-mediated proteolysis are very likely participated in the PHO2 signaling pathway, the membrane proteomics was employed to reveal the potential targets of PHO2 in this study. Based on our recently developed multiplexed quantitation strategy combining gel-assisted digestion, iTRAQ labeling and 2D-LC/MS/MS, total of 2795 proteins were quantified, of which 245 proteins showed statistically significant variation between wild-type and pho2 plants grown under two different conditions. To our knowledge, this dataset presents the largest Arabidopsis membrane proteome reported so far; as many as 1519 membrane proteins were ananotated as membrane proteins or containing at least one potential transmembrane helice. Of note, 65 proteins of differentially expressed proteins in the pho2 roots were annotated with transporter-related activity. Among them, the Pi transporter traffic facilitator 1 (PHF1) and many Pi transporters in the PHT1 family (PHT1;1, PHT1;2, PHT1;3 and PHT1;4) were upregulated in the pho2 roots, which suggests they could be responsible for the enhanced activities of Pi uptake and translocation in the pho2. Moreover, western analyses of these proteins and genetic study on the phf1 mutant supported the role of PHT1 family and PHF1 in the downstream pathway of PHO2. This study has provided insights into the molecular mechanism regulating Pi acquisition in plants.
The second example focuses on the membrane proteomics profiling of human embryonic stem cell. The SEMI-based label-free and iTRAQ-based quantitation methods were both employed for comparing the membrane proteome between undifferentiated and differentiated human embryonic stem cell. Using label-free approach, 981 proteins were identified with 95% confidence and 867 proteins were quantified. Among these proteins, significantly altered proteins between groups were compared with the results of iTRAQ labeling (3369 identified proteins) and showed consistent conclusions. Our method not only demonstrated its power on discovery of specific hESC markers for the corresponding ES cell state but may help to shed light on the mechanisms for self-renewal and differentiation.
誌謝.......................................................i
中文摘要..................................................ii
Abstract..................................................iv
Table of Contents........................................vii
List of Figures..........................................xii
List of Tables...........................................xvi
Abbreviations..........................................xviii
CHAPTER 1 INTRODUCTION.....................................1
1.1 Significance of Membrane Proteins......................1
1.2 Methods for Quantitative Membrane Proteomics...........2
1.2.1 Two-dimensional Gel Electrophoresis (2DE)............2
1.2.2 Stable Isotope Labeling Quantitation.................3
1.2.2.1 Metabolic Labeling in Cell Culture.................4
1.2.2.2 Enzymatic Labeling.................................5
1.2.2.3 Absolute Quantitation (AQUA).......................5
1.2.2.4 Chemical Labeling..................................6
1.2.3 Label-free Quantitation.............................10
1.3 Introduction of Phosphate Uptake in Arabidopsis thaliana and the Molecular Mechanism of PHO2 Signaling Pathway...................................................14
1.4 Membrane Proteome of Human Embryonic Stem Cell........16
1.4.1 Introduction of Human Embryonic Stem Cells..........16
1.4.2 Significance of Membrane Proteome in Stem Cell Biology...................................................17
1.5 Objective of this Study...............................19
CHAPTER 2 MATERILS AND METHODS............................21
2.1 Materials.............................................21
2.2 Sample Preparation....................................21
2.2.1 Plant Growth and Preparation of Total Root Membrane Fraction..................................................21
2.2.2 Culture and Differentiation of Stem Cells...........22
2.2.2.1 Feeder-Free Culture of Undifferentiated Human Embryonic Stem Cells (hES5)...............................22
2.2.2.2 Differentiation of Human Embryonic Stem Cells (hES5) from Embryonic Bodies to Embryoid Body (EB) Outgrowth.................................................23
2.2.3 Cell Culture of HeLa Cells..........................23
2.2.4 Membrane Protein Preparation........................24
2.2.4.1 Membrane Protein Purification from Cell Lines.....24
2.2.4.2 Membrane Protein Purification from Mouse Liver Tissues...................................................25
2.3 Gel-assisted Digestion for Membrane Proteins..........25
2.4 Protein and Peptide Assays............................26
2.4.1 Coomassie (Bradford) Protein Assay Kit (Pierce, Rockford, IL).............................................26
2.4.2 BCATM Protein Assay Kit (Pierce, Rockford, IL)......27
2.5 Desalting and Concentration...........................27
2.6 Quantitative Proteomic Analysis by iTRAQ Labeling.....28
2.6.1 iTRAQ Labeling Reaction with Four Stages of Peptides..................................................28
2.6.2 Peptide Fractionation by Strong Cation Exchange Chromatography............................................28
2.6.3 LC-MS/MS Analysis by Q-TOF Premier..................29
2.6.4 Data Analysis.......................................29
2.6.4.1 Database Search and Protein Identification........29
2.6.4.2 Quantification by Multi-Q.........................30
2.7 Quantitative Proteomic Analysis by Label-free Quantitation..............................................31
2.7.1 LC-MS/MS Analysis by Q-TOF Premier..................31
2.7.2 Database Search and Protein Identification..........32
2.7.3 Quantification by IDEAL-Q...........................33
2.8 Prediction the Transmembrane Helices and Gene Ontology Classification............................................33
2.9 Western Blot Analysis.................................34
2.10 Immunostaining and Fluorescence Microscopy...........34
CHAPTER 3 RESULTS.........................................36
3.1 Highly Sensitive and Multiplexed Quantitation Method for Membrane Proteomics Using Label-free and iTRAQ Labeling Strategies................................................36
3.2 Recovery of Membrane Protein Purification from Cells and Tissues...............................................37
3.2.1 Purification Recovery of Cell Model.................37
3.2.2 Starting Materials in Tissue Model..................38
3.3 Optimized Protocol for Label-free Quantitation........38
3.3.1 Optimization of LC Gradient and Acquisition Mode of LC-MS/MS..................................................38
3.3.2 Quantitation Accuracy and Reproducibility in Different LC Gradient.....................................40
3.3.3 Quantitation Accuracy and Reproducibility Obtained from Different Amount of Starting Materials...............41
3.4 Optimization for iTRAQ Strategy: Quantitation Accuracy and Reproducibility in Different Amount of Starting Materials.................................................42
3.5 Comparison of Quantitation Performance between Label-free and iTRAQ Labeling Strategies by Replicate Experiments...............................................44
3.6 Multiplexed Quantitation of Membrane Proteome of Wild-type Plants and pho2 Mutant..........................45
3.6.1 Reproducibility for Purification and Quantitation of Membrane Proteome.........................................45
3.6.2 Comparatively Quantitative Analysis of Membrane Proteins from Roots of Wild-type Plants and pho2 Mutant...46
3.7 Membrane Proteomics Analysis of Human Embryonic Stem Cells during Differentiation..............................48
3.7.1 Large-Scale Quantitative Membrane Proteomics of Stem Cells by iTRAQ-based Quantitation Method..................49
3.7.1.1 Optimized LC Gradient for iTRAQ Labeled Peptides in Different Fractions from SCX Separation...................49
3.7.1.2 Reproducibility for Purification and Quantitation.50
3.7.1.3 Quantitative Membrane Proteomics between Human Embryonic Stem Cell and Embryoid Body.....................51
3.7.2 Large-Scale Quantitative Membrane Proteomics of Stem Cells by Label-free Quantitation Method...................53
3.7.2.1 Reproducibility of Purification and Quantitation of Membrane Proteins on Stem Cell............................53
3.7.2.2 Quantitative Analysis of Membrane Proteomics of Human Embryonic Stem Cells and Embryoid Bodies............54
CHAPTER 4 DISCUSSION......................................56
4.1 Highly Sensitive Quantitation Strategy Provides Large-scale Quantification and Accuracy for Membrane Proteome..................................................56
4.2 Multiplexed Quantitation of Membrane Proteome of Wild-type Plants and pho2 Mutant..........................58
4.2.1 Pathway Mapping of Differentially Expressed Proteins from Roots of Wild-type Arabidopsis and pho2 Mutant.......59
4.3 Membrane Proteomics Analysis of Human Embryonic Stem Cells during Differentiation..............................61
4.3.1 Comparison of the Label-free and iTRAQ Quantitation
Methods via Membrane Proteome of Human ESC................61
4.3.2 Comparative Membrane Proteome of Stem Cells for the Discovery of Potential Biomarkers.........................62
4.3.2 Pathway Mapping of Differentially Expressed Proteins
from hESC and EB during Cell Differentiation..............67
CHAPTER 5 CONCLUSION......................................69
Referances................................................72
Figures...................................................89
Tables...................................................121
Appendix.................................................163
1. Oseroff, A. R.; Robbins, P. W.; Burger, M. M., The cell surface membrane: biochemical aspects and biophysical probes. Annu. Rev. Biochem. 1973, 42, (1), 647-682.
2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Molecular biology of the cell. 4th ed.; Garland Science: New York, 2002.
3. Prof. David, S. C., Structure and interactions of C2 domains at membrane surfaces. In Protein-Lipid Interactions, Prof. Dr. Lukas, K. T., Ed. 2006; pp 403-422.
4. Bisle, B.; Schmidt, A.; Scheibe, B.; Klein, C.; Tebbe, A.; Kellermann, J.; Siedler, F.; Pfeiffer, F.; Lottspeich, F.; Oesterhelt, D., Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol. Cell. Proteomics 2006, 5, (9), 1543-1558.
5. Timothy J. Stevens, I. T. A., Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins: Structure, Function, and Genetics 2000, 39, (4), 417-420.
6. Hopkins, A. L.; Groom, C. R., The druggable genome. Nat. Rev. Drug Discov. 2002, 1, (9), 727-730.
7. Xiang, R.; Shi, Y.; Dillon, D. A.; Negin, B.; Horvath, C.; Wilkins, J. A., 2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J. Proteome Res. 2004, 3, (6), 1278-1283.
8. Wallin, E.; von Heijne, G., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7, (4), 1029-1038.
9. Phadke, N. D.; Molloy, M. P.; Steinhoff, S. A.; Ulintz, P. J.; Andrews, P. C.; Maddock, J. R., Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Proteomics 2001, 1, (5), 705-720.
10. Bunai, K.; Nozaki, M.; Kakeshita, H.; Nemoto, T.; Yamane, K., Quantitation of de novo localized (15)N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. J. Proteome Res. 2005, 4, (3), 826-836.
11. Stefan Helling, E. S. C. J. T. S. S. M. l. S. F.-M. l. T. W. G. B. G. L. B. S. P. L. H. E. M. K. M., 2-D differential membrane proteome analysis of scarce protein samples. PROTEOMICS 2006, 6, (16), 4506-4513.
12. Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R., Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, (17), 9390-9395.
13. Wu, L. F.; Han, D. K., Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteomics 2006, 3, (6), 611-619.
14. Washburn, M. P.; Wolters, D.; Yates, J. R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, (3), 242-247.
15. Lohaus, C.; Nolte, A.; Bluggel, M.; Scheer, C.; Klose, J.; Gobom, J.; Schuller, A.; Wiebringhaus, T.; Meyer, H. E.; Marcus, K., Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain. J. Proteome Res. 2007, 6, (1), 105-113.
16. Astorga-Wells, J.; Tryggvason, S.; Vollmer, S.; Alvelius, G.; Palmberg, C.; Jornvall, H., Membrane protein identifications by mass spectrometry using electrocapture-based separation as part of a two-dimensional fractionation system. Anal. Biochem. 2008, 381, (1), 33-42.
17. Blonder, J.; Chan, K. C.; Issaq, H. J.; Veenstra, T. D., Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat. Protoc. 2006, 1, 2784-2790.
18. Blonder, J.; Goshe, M. B.; Moore, R. J.; Pasa-Tolic, L.; Masselon, C. D.; Lipton, M. S.; Smith, R. D., Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Proteome Res. 2002, 1, (4), 351-360.
19. Han, J.; Schey, K. L., Proteolysis and mass spectrometric analysis of an integral membrane: Aquaporin 0. J. Proteome Res. 2004, 3, (4), 807-812.
20. Han, D. K.; Eng, J.; Zhou, H. L.; Aebersold, R., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 2001, 19, (10), 946-951.
21. Zhong, H. Y.; Marcus, S. L.; Li, L., Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J. Am. Soc. Mass Spectrom. 2005, 16, (4), 471-481.
22. Lu, X. N.; Zhu, H. N., Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics 2005, 4, (12), 1948-1958.
23. Lund, R.; Leth-Larsen, R.; Jensen, O. N.; Ditzel, H. J., Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J. Proteome Res. 2009, 8, (6), 3078-3090.
24. Duan, X. T.; Young, R.; Straubinger, R. M.; Page, B.; Cao, J.; Wang, H.; Yu, H. Y.; Canty, J. M.; Qu, J., A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J. Proteome Res. 2009, 8, (6), 2838-2850.
25. Le Bihan, T.; Goh, T.; Stewart, I.; Salter, A. M.; Bukhman, Y. V.; Dharsee, M.; Ewing, R.; Wisniewski, J. R., Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J. Proteome Res. 2006, 5, (10), 2701-2710.
26. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, (5), 376-386.
27. Iliuk, A.; Galan, J.; Tao, W. A., Playing tag with quantitative proteomics. Anal. Bioanal. Chem. 2009, 393, (2), 503-513.
28. Beynon, R. J.; Pratt, J. M., Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 2005, 4, (7), 857-872.
29. Liang, X. Q.; Zhao, J.; Hajivandi, M.; Wu, R.; Tao, J.; Amshey, J. W.; Pope, R. M., Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. Mol. Cell. Proteomics 2006, 5, (10), 2632-2641.
30. Hor, S.; Ziv, T.; Admon, A.; Lehner, P. J., SILAC labeling and differential plasma membrane proteome quantitation identifies new substrates for the MARCH9 transmembrane E3 ligase. Mol. Cell. Proteomics 2009, Epub ahead of print.
31. Aggelis, V.; Craven, R. A.; Peng, J. H.; Harnden, P.; Cairns, D. A.; Maher, E. R.; Tonge, R.; Selby, P. J.; Banks, R. E., Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labelling of a von Hippel-Lindau transfectant cell line model. Proteomics 2009, 9, (8), 2118-2130.
32. Kruger, M.; Moser, M.; Ussar, S.; Thievessen, I.; Luber, C. A.; Forner, F.; Schmidt, S.; Zanivan, S.; Fassler, R.; Mann, M., SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008, 134, (2), 353-364.
33. Schnolzer, M.; Jedrzejewski, P.; Lehmann, W. D., Protease-catalyzed incorporation of O-18 into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 1996, 17, (5), 945-953.
34. Kirkpatrick, D. S.; Gerber, S. A.; Gygi, S. P., The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35, (3), 265-273.
35. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, (10), 994-999.
36. Wang, S. H.; Zhang, X.; Regnier, F. E., Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J. Chromatogr. A 2002, 949, (1-2), 153-162.
37. Ramus, C.; de Peredo, A. G.; Dahout, C.; Gallagher, M.; Garin, J., An optimized strategy for ICAT quantification of membrane proteins. Mol. Cell. Proteomics 2006, 5, (1), 68-78.
38. Ross, P. L.; Huang, Y. L. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, (12), 1154-1169.
39. Chen, X. Q.; Walker, A. K.; Strahler, J. R.; Simon, E. S.; Tomanicek-Volk, S. L.; Nelson, B. B.; Hurley, M. C.; Ernst, S. A.; Williams, J. A.; Andrews, P. C., Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 2006, 5, (2), 306-312.
40. Ow, S. Y.; Cardona, T.; Taton, A.; Magnuson, A.; Lindblad, P.; Stensjo, K.; Wright, P. C., Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J. Proteome Res. 2008, 7, (4), 1615-1628.
41. Lund, T. C.; Anderson, L. B.; McCullar, V.; Higgins, L.; Yun, G. H.; Grzywacz, B.; Verneris, M. R.; Miller, J. S., iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J. Proteome Res. 2006, 6, (2), 644-653.
42. Duthie, K. A.; Osborne, L. C.; Foster, L. J.; Abraham, N., Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Ralpha449F knock-in T cell progenitors. Mol. Cell. Proteomics 2007, 6, (10), 1700-1710.
43. Zeaiter, Z.; Cohen, D.; Musch, A.; Bagnoli, F.; Covacci, A.; Stein, M., Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell. Microbiol. 2008, 10, (3), 781-794.
44. Han, C. L.; Chien, C. W.; Chen, W. C.; Chen, Y. R.; Wu, C. P.; Li, H.; Chen, Y. J., A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics 2008, 7, (10), 1983-1997.
45. Lin, W. T.; Hung, W. N.; Yian, Y. H.; Wu, K. P.; Han, C. L.; Chen, Y. R.; Chen, Y. J.; Sung, T. Y.; Hsu, W. L., Multi-Q: a fully automated tool for multiplexed protein quantitation. J. Proteome Res. 2006, 5, (9), 2328-2338.
46. Cutillas, P. R.; Geering, B.; Waterfield, M. D., Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line. Mol. Cell. Proteomics 2005, 4, (8), 1038-1051.
47. Wang, W. X.; Zhou, H. H.; Lin, H.; Roy, S.; Shaler, T. A.; Hill, L. R.; Norton, S.; Kumar, P.; Anderle, M.; Becker, C. H., Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 2003, 75, (18), 4818-4826.
48. Cutillas, P. R.; Vanhaesebroeck, B., Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics 2007, 6, (9), 1560-1573.
49. Wang, G. H.; Wu, W. W.; Zeng, W. H.; Chou, C. L.; Shen, R. F., Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J. Proteome Res. 2006, 5, (5), 1214-1223.
50. Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007, 389, (4), 1017-1031.
51. Old, W. M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K. G.; Mendoza, A.; Sevinsky, J. R.; Resing, K. A.; Ahn, N. G., Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 2005, 4, (10), 1487-1502.
52. Chelius, D.; Bondarenko, P. V., Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res. 2002, 1, (4), 317-323.
53. C. C. Tsou, C. F. T., Y. H. Tsui, C. Y. Yu, Y. T. Wang, P. Y. Lin, Y. J. Chen, T. Y. Sung, and W. L. Hsu, manuscript in revision.
54. Yu, H. W.; Wakim, B.; Li, M.; Halligan, B.; Tint, S.; Patel, S. B., Quantifying raft proteins in neonatal mouse brain by 'tube-gel' protein digestion label-free shotgun proteomics. Proteome Sci. 2007, 5.
55. Schiess, R.; Mueller, L. N.; Schmidt, A.; Mueller, M.; Wollscheid, B.; Aebersold, R., Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol. Cell. Proteomics 2009, 8, (4), 624-638.
56. Wu, C. P. Altered membrane proteomic signature in colorectal cancer revealed by label-free quantitation strategy. National Taiwan Ocean University, Taipei, 2008.
57. Rocha, F. R.; Papini-Terzi, F. S.; Nishiyama, M. Y.; Vencio, R. Z. N.; Vicentini, R.; Duarte, R. D. C.; de Rosa, V. E.; Vinagre, F.; Barsalobres, C.; Medeiros, A. H.; Rodrigues, F. A.; Ulian, E. C.; Zingaretti, S. M.; Galbiatti, J. A.; Almeida, R. S.; Figueira, A. V. O.; Hemerly, A. S.; Silva-Filho, M. C.; Menossi, M.; Souza, G. M., Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 2007, 8.
58. Bieleski, R. L., Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1973, 24, 225-252.
59. Aung, K.; Lin, S. I.; Wu, C. C.; Huang, Y. T.; Su, C. L.; Chiou, T. J., pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol. 2006, 141, (3), 1000-1011.
60. Bari, R.; Pant, B. D.; Stitt, M.; Scheible, W. R., PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006, 141, (3), 988-999.
61. Chiou, T. J.; Aung, K.; Lin, S. I.; Wu, C. C.; Chiang, S. F.; Su, C. L., Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 2006, 18, (2), 412-421.
62. Delhaize, E.; Randall, P. J., Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 1995, 107, (1), 207-213.
63. Eckfeldt, C. E.; Mendenhall, E. M.; Verfaillie, C. M., The molecular repertoire of the 'almighty' stem cell. Nat. Rev. Mol. Cell Biol. 2005, 6, (9), 726-737.
64. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, (5391), 1145-1147.
65. McNeish, J., Embryonic stem cells in drug discovery. Nat. Rev. Drug Discov. 2004, 3, (1), 70-80.
66. Rolletschek, A.; Blyszczuk, P.; Wobus, A. M., Embryonic stem cell-derived cardiac, neuronal and pancreatic cells as model systems to study toxicological effects. Toxicol. Lett. 2004, 149, (1-3), 361-369.
67. Kim, D. W., Efficient induction of dopaminergic neurons from embryonic stem cells for application to Parkinson's disease. Yonsei Med. J. 2004, 45, 23-27.
68. Nunomura, K.; Nagano, K.; Itagaki, C.; Taoka, M.; Okamura, N.; Yamauchi, Y.; Sugano, S.; Takahashi, N.; Izumi, T.; Isobe, T., Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics 2005, 4, (12), 1968-1976.
69. Cai, J. L.; Chen, J.; Liu, Y.; Miura, T.; Luo, Y. Q.; Loring, J. F.; Freed, W. J.; Rao, M. S.; Zeng, X. M., Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 2006, 24, (3), 516-530.
70. Miura, T.; Luo, Y. Q.; Khrebtukova, I.; Brandenberger, R.; Zhou, D. X.; Thies, R. S.; Vasicek, T.; Young, H.; Lebkowski, J.; Carpenter, M. K.; Rao, M. S., Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev. 2004, 13, (6), 694-715.
71. Richards, M.; Tan, S. P.; Tan, J. H.; Chan, W. K.; Bongso, A., The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004, 22, (1), 51-64.
72. Bhattacharya, B.; Miura, T.; Brandenberger, R.; Mejido, J.; Luo, Y. Q.; Yang, A. X.; Joshi, B. H.; Ginis, I.; Thies, R. S.; Amit, M.; Lyons, I.; Condie, B. G.; Itskovitz-Eldor, J.; Rao, M. S.; Puri, R. K., Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004, 103, (8), 2956-2964.
73. Puri, R. K.; Bhattacharya, B.; Miura, T.; Mejido, J.; Luo, Y. Q.; Yang, A. X.; Joshi, B. H.; Irene, G.; Rao, M., Microrray analysis of gene expression identities unique molecular signature in human embryonic stem cell lines. FASEB J. 2004, 18, (5), A1121-A1121.
74. Von Hoof, D.; Mummery, C. L.; Heck, A. J. R.; Krijgsveld, J., Embryonic stem cell proteomics. Expert Rev. Proteomics 2006, 3, (4), 427-437.
75. Dormeyer, W.; van Hoof, D.; Braam, S. R.; Heck, A. J. R.; Mummery, C. L.; Krijgsveld, J., Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J. Proteome Res. 2008, 7, (7), 2936-2951.
76. Durr, E.; Yu, J. Y.; Krasinska, K. M.; Carver, L. A.; Yates, J. R.; Testa, J. E.; Oh, P.; Schnitzer, J. E., Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 2004, 22, (8), 985-992.
77. Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 2001, 305, (3), 567-580.
78. Zeeberg, B. R.; Feng, W. M.; Wang, G.; Wang, M. D.; Fojo, A. T.; Sunshine, M.; Narasimhan, S.; Kane, D. W.; Reinhold, W. C.; Lababidi, S.; Bussey, K. J.; Riss, J.; Barrett, J. C.; Weinstein, J. N., GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4, (4).
79. Armstrong, L.; Hughes, O.; Yung, S.; Hyslop, L.; Stewart, R.; Wappler, I.; Peters, H.; Walter, T.; Stojkovic, P.; Evans, J.; Stojkovic, M.; Lako, M., The role of PI3K/AKT, MAPK/ERK and NF kappa beta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet. 2006, 15, (11), 1894-1913.
80. Vissers, J. P. C.; Langridge, J. I.; Aerts, J., Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol. Cell. Proteomics 2007, 6, (5), 755-766.
81. Shin, H.; Shin, H. S.; Dewbre, G. R.; Harrison, M. J., Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 2004, 39, (4), 629-642.
82. Gonzalez, E.; Solano, R.; Rubio, V.; Leyva, A.; Paz-Ares, J., PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 2005, 17, (12), 3500-3512.
83. Haegel, H.; Dierich, A.; Ceredig, R., CD44 in differentiated embryonic stem cells: surface expression and transcripts encoding multiple variants. Dev. Immunol. 1994, 3, (4), 239-246.
84. Honecker, F.; Stoop, H.; Mayer, F.; Bokemeyer, C.; Castrillon, D. H.; Lau, Y. F. C.; Looijenga, L. H. J.; Oosterhuis, J. W., Germ cell lineage differentiation in non-seminomatous germ cell tumours. J. Pathol. 2006, 208, (3), 395-400.
85. Jeffrey, M. K.; Lino, S. F.; Ali, K.; Albert, H. K.; Judy, Y.; Robert, S. L., Cultivation of Human Embryonic Stem Cells Without the Embryoid Body Step Enhances Osteogenesis In Vitro. Stem Cells 2006, 24, (4), 835-843.
86. Brandenberger, R.; Khrebtukova, I.; Thies, R. S.; Miura, T.; Jingli, C.; Puri, R.; Vasicek, T.; Lebkowski, J.; Rao, M., MPSS profiling of human embryonic stem cells. BMC Dev. Biol. 2004, 4, (1), 10.
87. Kubota, F.; Murakami, T.; Mogi, K.; Yorifuji, H., Cadherin-6 is required for zebrafish nephrogenesis during early development. Int. J. Dev. Biol. 2007, 51, (2), 123-129.
88. Van Hoof, D.; Passier, R.; Ward-Van Oostwaard, D.; Pinkse, M. W. H.; Heck, A. J. R.; Mummery, C. L.; Krijgsveld, J., A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell. Proteomics 2006, 5, (7), 1261-1273.
89. Conrads, T. P.; Tocci, G. M.; Hood, B. L.; Zhang, C. O.; Guo, L.; Koch, K. R.; Michejda, C. J.; Veenstra, T. D.; Keay, S. K., CKAP4/p63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J. Biol. Chem. 2006, 281, (49), 37836-37843.
90. Wei, C. L.; Miura, T.; Robson, P.; Lim, S. K.; Xu, X. Q.; Lee, M. Y. C.; Gupta, S.; Stanton, L.; Luo, Y. Q.; Schmitt, J.; Thies, S.; Khrebtukova, I.; Zhou, D. X.; Liu, E. T.; Ruan, Y. J.; Rao, M.; Lim, B., Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 2005, 23, (2), 166-185.
91. Tonack, S.; Rolletschek, A.; Wobus, A. M.; Fischer, B.; Santos, A. N., Differential expression of glucose transporter isoforms during embryonic stem cell differentiation. Differentiation 2006, 74, (9-10), 499-509.
92. Zahn, C.; Hommel, A.; Lu, L.; Hong, W. J.; Walther, D. J.; Florian, S.; Joost, H. G.; Schurmann, A., Knockout of Arfrp1 leads to disruption of ARF-like1 (ARL1) targeting to the trans-Golgi in mouse embryos and HeLa cells. Mol. Membr. Biol. 2006, 23, (6), 475-485.
93. Goossens, K.; Van Soom, A.; Van Zeveren, A.; Favoreel, H.; Peelman, L. J., Quantification of Fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 2009, 9, 16.
94. Chou, S. C.; Ko, T. L.; Fu, Y. Y.; Wang, H. W.; Fu, Y. S., Identification of genetic networks during mesenchymal stem cell transformation into neurons. Chin. J. Physiol. 2008, 51, (4), 230-246.
95. Adewumi, O.; Aflatoonian, B.; Ahrlund-Richter, L.; Amit, M.; Andrews, P. W.; Beighton, G.; Bello, P. A.; Benvenisty, N.; Berry, L. S.; Bevan, S.; Blum, B.; Brooking, J.; Chen, K. G.; Choo, A. B. H.; Churchill, G. A.; Corbel, M.; Damjanov, I.; Draper, J. S.; Dvorak, P.; Emanuelsson, K.; Fleck, R. A.; Ford, A.; Gertow, K.; Gertsenstein, M.; Gokhale, P. J.; Hamilton, R. S.; Hampl, A.; Healy, L. E.; Hovatta, O.; Hyllner, J.; Imreh, M. P.; Itskovitz-Eldor, J.; Jackson, J.; Johnson, J. L.; Jones, M.; Kee, K.; King, B. L.; Knowles, B. B.; Lako, M.; Lebrin, F.; Mallon, B. S.; Manning, D.; Mayshar, Y.; McKay, R. D. G.; Michalska, A. E.; Mikkola, M.; Mileikovsky, M.; Minger, S. L.; Moore, H. D.; Mummery, C. L.; Nagy, A.; Nakatsuji, N.; O'Brien, C. M.; Oh, S. K. W.; Olsson, C.; Otonkoski, T.; Park, K. Y.; Passier, R.; Patel, H.; Patel, M.; Pedersen, R.; Pera, M. F.; Piekarczyk, M. S.; Pera, R. A. R.; Reubinoff, B. E.; Robins, A. J.; Rossant, J.; Rugg-Gunn, P.; Schulz, T. C.; Semb, H.; Sherrer, E. S.; Siemen, H.; Stacey, G. N.; Stojkovic, M.; Suemori, H.; Szatkiewicz, J.; Turetsky, T.; Tuuri, T.; van den Brink, S.; Vintersten, K.; Vuoristo, S.; Ward, D.; Weaver, T. A.; Young, L. A.; Zhang, W. D.; Int Stem Cell, I., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology 2007, 25, (7), 803-816.
96. Stewart, R.; Stojkovic, M.; Lako, M., Mechanisms of self-renewal in human embryonic stem cells. Eur. J. Cancer 2006, 42, (9), 1257-1272.
97. Wong, R. C. B.; Pebay, A.; Nguyen, L. T. V.; Koh, K. L. L.; Pera, M. F., Presence of functional gap junctions in human embryonic stem cells. Stem Cells 2004, 22, (6), 883-889.
98. Bhattacharya, B.; Cai, J. L.; Luo, Y. Q.; Miura, T.; Mejido, J.; Brimble, S. N.; Zeng, X. M.; Schulz, T. C.; Rao, M. S.; Puri, R. K., Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev. Biol. 2005, 5.
99. Schulz, T. C.; Swistowska, A. M.; Liu, Y.; Swistowski, A.; Palmarini, G.; Brimble, S. N.; Sherrer, E.; Robins, A. J.; Rao, M. S.; Zeng, X. M., A large-scale proteomic analysis of human embryonic stem cells. BMC Genomics 2007, 8.
100. Prokhorova, T. A.; Rigbolt, K. T. G.; Johansen, P. T.; Henningsen, J.; Kratchmarova, I.; Kassem, M.; Blagoev, B., Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell. Proteomics 2009, 8, (5), 959-970.
101. Mizrak, D.; Brittan, M.; Alison, M. R., CD133: molecule of the moment. J. Pathol. 2008, 214, (1), 3-9.
102. Pfenninger, C. V.; Roschupkina, T.; Hertwig, F.; Kottwitz, D.; Englund, E.; Bengzon, J.; Jacobsen, S. E.; Nuber, U. A., CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007, 67, (12), 5727-5736.
103. Kania, G.; Corbeil, D.; Fuchs, J.; Tarasov, K. V.; Blyszczuk, P.; Huttner, W. B.; Boheler, K. R.; Wobus, A. M., Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 2005, 23, (6), 791-804.
104. Sperger, J. M.; Chen, X.; Draper, J. S.; Antosiewicz, J. E.; Chon, C. H.; Jones, S. B.; Brooks, J. D.; Andrews, P. W.; Brown, P. O.; Thomson, J. A., Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, (23), 13350-13355.
105. Zhang, M.; Wang, A. G.; He, W. H.; He, P.; Xu, A.; Xia, T.; Chen, X. L.; Yang, K. D., Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology 2007, 236, (3), 208-216.
106. Rutishauser, U.; Acheson, A.; Hall, A. K.; Mann, D. M.; Sunshine, J., The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions Science 1988, 240, (4848), 53-57.
107. Martino, M. M.; Mochizuki, M.; Rothenfluh, D. A.; Rempel, S. A.; Hubbell, J. A.; Barker, T. H., Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 2009, 30, (6), 1089-1097.
108. Su, L.; Lv, X.; Xu, J. P.; Yin, D. L.; Zhang, H. Y.; Li, Y.; Zhao, J.; Zhang, S. L.; Miao, J. Y., Neural stem cell differentiation is mediated by integrin beta 4 in vitro. Int. J. Biochem. Cell Biol. 2009, 41, (4), 916-924.
109. Critchley, D. R.; Holt, M. R.; Barry, S. T.; Priddle, H.; Hemmings, L.; Norman, J., Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem. Soc. Symp. 1999, (65), 79-99.
110. Salasznyk, R. M.; Klees, R. F.; Williams, W. A.; Boskey, A.; Plopper, G. E., Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp. Cell Res. 2007, 313, (1), 22-37.
111. Silva, J. C.; Denny, R.; Dorschel, C. A.; Gorenstein, M.; Kass, I. J.; Li, G. Z.; McKenna, T.; Nold, M. J.; Richardson, K.; Young, P.; Geromanos, S., Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 2005, 77, (7), 2187-2200.
112. Qian, W. J.; Camp, D. G.; Smith, R. D., High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev. Proteomics 2004, 1, (1), 87-95.
113. Andreev, V. P.; Li, L. Y.; Cao, L.; Gu, Y.; Rejtar, T.; Wu, S. L.; Karger, B. L., A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS. J. Proteome Res. 2007, 6, (6), 2186-2194.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top