|
1. Oseroff, A. R.; Robbins, P. W.; Burger, M. M., The cell surface membrane: biochemical aspects and biophysical probes. Annu. Rev. Biochem. 1973, 42, (1), 647-682. 2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Molecular biology of the cell. 4th ed.; Garland Science: New York, 2002. 3. Prof. David, S. C., Structure and interactions of C2 domains at membrane surfaces. In Protein-Lipid Interactions, Prof. Dr. Lukas, K. T., Ed. 2006; pp 403-422. 4. Bisle, B.; Schmidt, A.; Scheibe, B.; Klein, C.; Tebbe, A.; Kellermann, J.; Siedler, F.; Pfeiffer, F.; Lottspeich, F.; Oesterhelt, D., Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol. Cell. Proteomics 2006, 5, (9), 1543-1558. 5. Timothy J. Stevens, I. T. A., Do more complex organisms have a greater proportion of membrane proteins in their genomes? Proteins: Structure, Function, and Genetics 2000, 39, (4), 417-420. 6. Hopkins, A. L.; Groom, C. R., The druggable genome. Nat. Rev. Drug Discov. 2002, 1, (9), 727-730. 7. Xiang, R.; Shi, Y.; Dillon, D. A.; Negin, B.; Horvath, C.; Wilkins, J. A., 2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J. Proteome Res. 2004, 3, (6), 1278-1283. 8. Wallin, E.; von Heijne, G., Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7, (4), 1029-1038. 9. Phadke, N. D.; Molloy, M. P.; Steinhoff, S. A.; Ulintz, P. J.; Andrews, P. C.; Maddock, J. R., Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Proteomics 2001, 1, (5), 705-720. 10. Bunai, K.; Nozaki, M.; Kakeshita, H.; Nemoto, T.; Yamane, K., Quantitation of de novo localized (15)N-labeled lipoproteins and membrane proteins having one and two transmembrane segments in a Bacillus subtilis secA temperature-sensitive mutant using 2D-PAGE and MALDI-TOF MS. J. Proteome Res. 2005, 4, (3), 826-836. 11. Stefan Helling, E. S. C. J. T. S. S. M. l. S. F.-M. l. T. W. G. B. G. L. B. S. P. L. H. E. M. K. M., 2-D differential membrane proteome analysis of scarce protein samples. PROTEOMICS 2006, 6, (16), 4506-4513. 12. Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R., Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, (17), 9390-9395. 13. Wu, L. F.; Han, D. K., Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev. Proteomics 2006, 3, (6), 611-619. 14. Washburn, M. P.; Wolters, D.; Yates, J. R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, (3), 242-247. 15. Lohaus, C.; Nolte, A.; Bluggel, M.; Scheer, C.; Klose, J.; Gobom, J.; Schuller, A.; Wiebringhaus, T.; Meyer, H. E.; Marcus, K., Multidimensional chromatography: a powerful tool for the analysis of membrane proteins in mouse brain. J. Proteome Res. 2007, 6, (1), 105-113. 16. Astorga-Wells, J.; Tryggvason, S.; Vollmer, S.; Alvelius, G.; Palmberg, C.; Jornvall, H., Membrane protein identifications by mass spectrometry using electrocapture-based separation as part of a two-dimensional fractionation system. Anal. Biochem. 2008, 381, (1), 33-42. 17. Blonder, J.; Chan, K. C.; Issaq, H. J.; Veenstra, T. D., Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat. Protoc. 2006, 1, 2784-2790. 18. Blonder, J.; Goshe, M. B.; Moore, R. J.; Pasa-Tolic, L.; Masselon, C. D.; Lipton, M. S.; Smith, R. D., Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Proteome Res. 2002, 1, (4), 351-360. 19. Han, J.; Schey, K. L., Proteolysis and mass spectrometric analysis of an integral membrane: Aquaporin 0. J. Proteome Res. 2004, 3, (4), 807-812. 20. Han, D. K.; Eng, J.; Zhou, H. L.; Aebersold, R., Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol. 2001, 19, (10), 946-951. 21. Zhong, H. Y.; Marcus, S. L.; Li, L., Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J. Am. Soc. Mass Spectrom. 2005, 16, (4), 471-481. 22. Lu, X. N.; Zhu, H. N., Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics 2005, 4, (12), 1948-1958. 23. Lund, R.; Leth-Larsen, R.; Jensen, O. N.; Ditzel, H. J., Efficient isolation and quantitative proteomic analysis of cancer cell plasma membrane proteins for identification of metastasis-associated cell surface markers. J. Proteome Res. 2009, 8, (6), 3078-3090. 24. Duan, X. T.; Young, R.; Straubinger, R. M.; Page, B.; Cao, J.; Wang, H.; Yu, H. Y.; Canty, J. M.; Qu, J., A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled with a long gradient nano-LC separation and Orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. J. Proteome Res. 2009, 8, (6), 2838-2850. 25. Le Bihan, T.; Goh, T.; Stewart, I.; Salter, A. M.; Bukhman, Y. V.; Dharsee, M.; Ewing, R.; Wisniewski, J. R., Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach. J. Proteome Res. 2006, 5, (10), 2701-2710. 26. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, (5), 376-386. 27. Iliuk, A.; Galan, J.; Tao, W. A., Playing tag with quantitative proteomics. Anal. Bioanal. Chem. 2009, 393, (2), 503-513. 28. Beynon, R. J.; Pratt, J. M., Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 2005, 4, (7), 857-872. 29. Liang, X. Q.; Zhao, J.; Hajivandi, M.; Wu, R.; Tao, J.; Amshey, J. W.; Pope, R. M., Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. Mol. Cell. Proteomics 2006, 5, (10), 2632-2641. 30. Hor, S.; Ziv, T.; Admon, A.; Lehner, P. J., SILAC labeling and differential plasma membrane proteome quantitation identifies new substrates for the MARCH9 transmembrane E3 ligase. Mol. Cell. Proteomics 2009, Epub ahead of print. 31. Aggelis, V.; Craven, R. A.; Peng, J. H.; Harnden, P.; Cairns, D. A.; Maher, E. R.; Tonge, R.; Selby, P. J.; Banks, R. E., Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labelling of a von Hippel-Lindau transfectant cell line model. Proteomics 2009, 9, (8), 2118-2130. 32. Kruger, M.; Moser, M.; Ussar, S.; Thievessen, I.; Luber, C. A.; Forner, F.; Schmidt, S.; Zanivan, S.; Fassler, R.; Mann, M., SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008, 134, (2), 353-364. 33. Schnolzer, M.; Jedrzejewski, P.; Lehmann, W. D., Protease-catalyzed incorporation of O-18 into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 1996, 17, (5), 945-953. 34. Kirkpatrick, D. S.; Gerber, S. A.; Gygi, S. P., The absolute quantification strategy: a general procedure for the quantification of proteins and post-translational modifications. Methods 2005, 35, (3), 265-273. 35. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, (10), 994-999. 36. Wang, S. H.; Zhang, X.; Regnier, F. E., Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J. Chromatogr. A 2002, 949, (1-2), 153-162. 37. Ramus, C.; de Peredo, A. G.; Dahout, C.; Gallagher, M.; Garin, J., An optimized strategy for ICAT quantification of membrane proteins. Mol. Cell. Proteomics 2006, 5, (1), 68-78. 38. Ross, P. L.; Huang, Y. L. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, (12), 1154-1169. 39. Chen, X. Q.; Walker, A. K.; Strahler, J. R.; Simon, E. S.; Tomanicek-Volk, S. L.; Nelson, B. B.; Hurley, M. C.; Ernst, S. A.; Williams, J. A.; Andrews, P. C., Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 2006, 5, (2), 306-312. 40. Ow, S. Y.; Cardona, T.; Taton, A.; Magnuson, A.; Lindblad, P.; Stensjo, K.; Wright, P. C., Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J. Proteome Res. 2008, 7, (4), 1615-1628. 41. Lund, T. C.; Anderson, L. B.; McCullar, V.; Higgins, L.; Yun, G. H.; Grzywacz, B.; Verneris, M. R.; Miller, J. S., iTRAQ is a useful method to screen for membrane-bound proteins differentially expressed in human natural killer cell types. J. Proteome Res. 2006, 6, (2), 644-653. 42. Duthie, K. A.; Osborne, L. C.; Foster, L. J.; Abraham, N., Proteomics analysis of interleukin (IL)-7-induced signaling effectors shows selective changes in IL-7Ralpha449F knock-in T cell progenitors. Mol. Cell. Proteomics 2007, 6, (10), 1700-1710. 43. Zeaiter, Z.; Cohen, D.; Musch, A.; Bagnoli, F.; Covacci, A.; Stein, M., Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell. Microbiol. 2008, 10, (3), 781-794. 44. Han, C. L.; Chien, C. W.; Chen, W. C.; Chen, Y. R.; Wu, C. P.; Li, H.; Chen, Y. J., A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol. Cell. Proteomics 2008, 7, (10), 1983-1997. 45. Lin, W. T.; Hung, W. N.; Yian, Y. H.; Wu, K. P.; Han, C. L.; Chen, Y. R.; Chen, Y. J.; Sung, T. Y.; Hsu, W. L., Multi-Q: a fully automated tool for multiplexed protein quantitation. J. Proteome Res. 2006, 5, (9), 2328-2338. 46. Cutillas, P. R.; Geering, B.; Waterfield, M. D., Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line. Mol. Cell. Proteomics 2005, 4, (8), 1038-1051. 47. Wang, W. X.; Zhou, H. H.; Lin, H.; Roy, S.; Shaler, T. A.; Hill, L. R.; Norton, S.; Kumar, P.; Anderle, M.; Becker, C. H., Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 2003, 75, (18), 4818-4826. 48. Cutillas, P. R.; Vanhaesebroeck, B., Quantitative profile of five murine core proteomes using label-free functional proteomics. Mol. Cell. Proteomics 2007, 6, (9), 1560-1573. 49. Wang, G. H.; Wu, W. W.; Zeng, W. H.; Chou, C. L.; Shen, R. F., Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J. Proteome Res. 2006, 5, (5), 1214-1223. 50. Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007, 389, (4), 1017-1031. 51. Old, W. M.; Meyer-Arendt, K.; Aveline-Wolf, L.; Pierce, K. G.; Mendoza, A.; Sevinsky, J. R.; Resing, K. A.; Ahn, N. G., Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 2005, 4, (10), 1487-1502. 52. Chelius, D.; Bondarenko, P. V., Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res. 2002, 1, (4), 317-323. 53. C. C. Tsou, C. F. T., Y. H. Tsui, C. Y. Yu, Y. T. Wang, P. Y. Lin, Y. J. Chen, T. Y. Sung, and W. L. Hsu, manuscript in revision. 54. Yu, H. W.; Wakim, B.; Li, M.; Halligan, B.; Tint, S.; Patel, S. B., Quantifying raft proteins in neonatal mouse brain by 'tube-gel' protein digestion label-free shotgun proteomics. Proteome Sci. 2007, 5. 55. Schiess, R.; Mueller, L. N.; Schmidt, A.; Mueller, M.; Wollscheid, B.; Aebersold, R., Analysis of cell surface proteome changes via label-free, quantitative mass spectrometry. Mol. Cell. Proteomics 2009, 8, (4), 624-638. 56. Wu, C. P. Altered membrane proteomic signature in colorectal cancer revealed by label-free quantitation strategy. National Taiwan Ocean University, Taipei, 2008. 57. Rocha, F. R.; Papini-Terzi, F. S.; Nishiyama, M. Y.; Vencio, R. Z. N.; Vicentini, R.; Duarte, R. D. C.; de Rosa, V. E.; Vinagre, F.; Barsalobres, C.; Medeiros, A. H.; Rodrigues, F. A.; Ulian, E. C.; Zingaretti, S. M.; Galbiatti, J. A.; Almeida, R. S.; Figueira, A. V. O.; Hemerly, A. S.; Silva-Filho, M. C.; Menossi, M.; Souza, G. M., Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 2007, 8. 58. Bieleski, R. L., Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1973, 24, 225-252. 59. Aung, K.; Lin, S. I.; Wu, C. C.; Huang, Y. T.; Su, C. L.; Chiou, T. J., pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol. 2006, 141, (3), 1000-1011. 60. Bari, R.; Pant, B. D.; Stitt, M.; Scheible, W. R., PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol. 2006, 141, (3), 988-999. 61. Chiou, T. J.; Aung, K.; Lin, S. I.; Wu, C. C.; Chiang, S. F.; Su, C. L., Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 2006, 18, (2), 412-421. 62. Delhaize, E.; Randall, P. J., Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 1995, 107, (1), 207-213. 63. Eckfeldt, C. E.; Mendenhall, E. M.; Verfaillie, C. M., The molecular repertoire of the 'almighty' stem cell. Nat. Rev. Mol. Cell Biol. 2005, 6, (9), 726-737. 64. Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, (5391), 1145-1147. 65. McNeish, J., Embryonic stem cells in drug discovery. Nat. Rev. Drug Discov. 2004, 3, (1), 70-80. 66. Rolletschek, A.; Blyszczuk, P.; Wobus, A. M., Embryonic stem cell-derived cardiac, neuronal and pancreatic cells as model systems to study toxicological effects. Toxicol. Lett. 2004, 149, (1-3), 361-369. 67. Kim, D. W., Efficient induction of dopaminergic neurons from embryonic stem cells for application to Parkinson's disease. Yonsei Med. J. 2004, 45, 23-27. 68. Nunomura, K.; Nagano, K.; Itagaki, C.; Taoka, M.; Okamura, N.; Yamauchi, Y.; Sugano, S.; Takahashi, N.; Izumi, T.; Isobe, T., Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell. Proteomics 2005, 4, (12), 1968-1976. 69. Cai, J. L.; Chen, J.; Liu, Y.; Miura, T.; Luo, Y. Q.; Loring, J. F.; Freed, W. J.; Rao, M. S.; Zeng, X. M., Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 2006, 24, (3), 516-530. 70. Miura, T.; Luo, Y. Q.; Khrebtukova, I.; Brandenberger, R.; Zhou, D. X.; Thies, R. S.; Vasicek, T.; Young, H.; Lebkowski, J.; Carpenter, M. K.; Rao, M. S., Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev. 2004, 13, (6), 694-715. 71. Richards, M.; Tan, S. P.; Tan, J. H.; Chan, W. K.; Bongso, A., The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 2004, 22, (1), 51-64. 72. Bhattacharya, B.; Miura, T.; Brandenberger, R.; Mejido, J.; Luo, Y. Q.; Yang, A. X.; Joshi, B. H.; Ginis, I.; Thies, R. S.; Amit, M.; Lyons, I.; Condie, B. G.; Itskovitz-Eldor, J.; Rao, M. S.; Puri, R. K., Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 2004, 103, (8), 2956-2964. 73. Puri, R. K.; Bhattacharya, B.; Miura, T.; Mejido, J.; Luo, Y. Q.; Yang, A. X.; Joshi, B. H.; Irene, G.; Rao, M., Microrray analysis of gene expression identities unique molecular signature in human embryonic stem cell lines. FASEB J. 2004, 18, (5), A1121-A1121. 74. Von Hoof, D.; Mummery, C. L.; Heck, A. J. R.; Krijgsveld, J., Embryonic stem cell proteomics. Expert Rev. Proteomics 2006, 3, (4), 427-437. 75. Dormeyer, W.; van Hoof, D.; Braam, S. R.; Heck, A. J. R.; Mummery, C. L.; Krijgsveld, J., Plasma membrane proteomics of human embryonic stem cells and human embryonal carcinoma cells. J. Proteome Res. 2008, 7, (7), 2936-2951. 76. Durr, E.; Yu, J. Y.; Krasinska, K. M.; Carver, L. A.; Yates, J. R.; Testa, J. E.; Oh, P.; Schnitzer, J. E., Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 2004, 22, (8), 985-992. 77. Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E. L. L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 2001, 305, (3), 567-580. 78. Zeeberg, B. R.; Feng, W. M.; Wang, G.; Wang, M. D.; Fojo, A. T.; Sunshine, M.; Narasimhan, S.; Kane, D. W.; Reinhold, W. C.; Lababidi, S.; Bussey, K. J.; Riss, J.; Barrett, J. C.; Weinstein, J. N., GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4, (4). 79. Armstrong, L.; Hughes, O.; Yung, S.; Hyslop, L.; Stewart, R.; Wappler, I.; Peters, H.; Walter, T.; Stojkovic, P.; Evans, J.; Stojkovic, M.; Lako, M., The role of PI3K/AKT, MAPK/ERK and NF kappa beta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum. Mol. Genet. 2006, 15, (11), 1894-1913. 80. Vissers, J. P. C.; Langridge, J. I.; Aerts, J., Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol. Cell. Proteomics 2007, 6, (5), 755-766. 81. Shin, H.; Shin, H. S.; Dewbre, G. R.; Harrison, M. J., Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J. 2004, 39, (4), 629-642. 82. Gonzalez, E.; Solano, R.; Rubio, V.; Leyva, A.; Paz-Ares, J., PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 2005, 17, (12), 3500-3512. 83. Haegel, H.; Dierich, A.; Ceredig, R., CD44 in differentiated embryonic stem cells: surface expression and transcripts encoding multiple variants. Dev. Immunol. 1994, 3, (4), 239-246. 84. Honecker, F.; Stoop, H.; Mayer, F.; Bokemeyer, C.; Castrillon, D. H.; Lau, Y. F. C.; Looijenga, L. H. J.; Oosterhuis, J. W., Germ cell lineage differentiation in non-seminomatous germ cell tumours. J. Pathol. 2006, 208, (3), 395-400. 85. Jeffrey, M. K.; Lino, S. F.; Ali, K.; Albert, H. K.; Judy, Y.; Robert, S. L., Cultivation of Human Embryonic Stem Cells Without the Embryoid Body Step Enhances Osteogenesis In Vitro. Stem Cells 2006, 24, (4), 835-843. 86. Brandenberger, R.; Khrebtukova, I.; Thies, R. S.; Miura, T.; Jingli, C.; Puri, R.; Vasicek, T.; Lebkowski, J.; Rao, M., MPSS profiling of human embryonic stem cells. BMC Dev. Biol. 2004, 4, (1), 10. 87. Kubota, F.; Murakami, T.; Mogi, K.; Yorifuji, H., Cadherin-6 is required for zebrafish nephrogenesis during early development. Int. J. Dev. Biol. 2007, 51, (2), 123-129. 88. Van Hoof, D.; Passier, R.; Ward-Van Oostwaard, D.; Pinkse, M. W. H.; Heck, A. J. R.; Mummery, C. L.; Krijgsveld, J., A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell. Proteomics 2006, 5, (7), 1261-1273. 89. Conrads, T. P.; Tocci, G. M.; Hood, B. L.; Zhang, C. O.; Guo, L.; Koch, K. R.; Michejda, C. J.; Veenstra, T. D.; Keay, S. K., CKAP4/p63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J. Biol. Chem. 2006, 281, (49), 37836-37843. 90. Wei, C. L.; Miura, T.; Robson, P.; Lim, S. K.; Xu, X. Q.; Lee, M. Y. C.; Gupta, S.; Stanton, L.; Luo, Y. Q.; Schmitt, J.; Thies, S.; Khrebtukova, I.; Zhou, D. X.; Liu, E. T.; Ruan, Y. J.; Rao, M.; Lim, B., Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state. Stem Cells 2005, 23, (2), 166-185. 91. Tonack, S.; Rolletschek, A.; Wobus, A. M.; Fischer, B.; Santos, A. N., Differential expression of glucose transporter isoforms during embryonic stem cell differentiation. Differentiation 2006, 74, (9-10), 499-509. 92. Zahn, C.; Hommel, A.; Lu, L.; Hong, W. J.; Walther, D. J.; Florian, S.; Joost, H. G.; Schurmann, A., Knockout of Arfrp1 leads to disruption of ARF-like1 (ARL1) targeting to the trans-Golgi in mouse embryos and HeLa cells. Mol. Membr. Biol. 2006, 23, (6), 475-485. 93. Goossens, K.; Van Soom, A.; Van Zeveren, A.; Favoreel, H.; Peelman, L. J., Quantification of Fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 2009, 9, 16. 94. Chou, S. C.; Ko, T. L.; Fu, Y. Y.; Wang, H. W.; Fu, Y. S., Identification of genetic networks during mesenchymal stem cell transformation into neurons. Chin. J. Physiol. 2008, 51, (4), 230-246. 95. Adewumi, O.; Aflatoonian, B.; Ahrlund-Richter, L.; Amit, M.; Andrews, P. W.; Beighton, G.; Bello, P. A.; Benvenisty, N.; Berry, L. S.; Bevan, S.; Blum, B.; Brooking, J.; Chen, K. G.; Choo, A. B. H.; Churchill, G. A.; Corbel, M.; Damjanov, I.; Draper, J. S.; Dvorak, P.; Emanuelsson, K.; Fleck, R. A.; Ford, A.; Gertow, K.; Gertsenstein, M.; Gokhale, P. J.; Hamilton, R. S.; Hampl, A.; Healy, L. E.; Hovatta, O.; Hyllner, J.; Imreh, M. P.; Itskovitz-Eldor, J.; Jackson, J.; Johnson, J. L.; Jones, M.; Kee, K.; King, B. L.; Knowles, B. B.; Lako, M.; Lebrin, F.; Mallon, B. S.; Manning, D.; Mayshar, Y.; McKay, R. D. G.; Michalska, A. E.; Mikkola, M.; Mileikovsky, M.; Minger, S. L.; Moore, H. D.; Mummery, C. L.; Nagy, A.; Nakatsuji, N.; O'Brien, C. M.; Oh, S. K. W.; Olsson, C.; Otonkoski, T.; Park, K. Y.; Passier, R.; Patel, H.; Patel, M.; Pedersen, R.; Pera, M. F.; Piekarczyk, M. S.; Pera, R. A. R.; Reubinoff, B. E.; Robins, A. J.; Rossant, J.; Rugg-Gunn, P.; Schulz, T. C.; Semb, H.; Sherrer, E. S.; Siemen, H.; Stacey, G. N.; Stojkovic, M.; Suemori, H.; Szatkiewicz, J.; Turetsky, T.; Tuuri, T.; van den Brink, S.; Vintersten, K.; Vuoristo, S.; Ward, D.; Weaver, T. A.; Young, L. A.; Zhang, W. D.; Int Stem Cell, I., Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology 2007, 25, (7), 803-816. 96. Stewart, R.; Stojkovic, M.; Lako, M., Mechanisms of self-renewal in human embryonic stem cells. Eur. J. Cancer 2006, 42, (9), 1257-1272. 97. Wong, R. C. B.; Pebay, A.; Nguyen, L. T. V.; Koh, K. L. L.; Pera, M. F., Presence of functional gap junctions in human embryonic stem cells. Stem Cells 2004, 22, (6), 883-889. 98. Bhattacharya, B.; Cai, J. L.; Luo, Y. Q.; Miura, T.; Mejido, J.; Brimble, S. N.; Zeng, X. M.; Schulz, T. C.; Rao, M. S.; Puri, R. K., Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev. Biol. 2005, 5. 99. Schulz, T. C.; Swistowska, A. M.; Liu, Y.; Swistowski, A.; Palmarini, G.; Brimble, S. N.; Sherrer, E.; Robins, A. J.; Rao, M. S.; Zeng, X. M., A large-scale proteomic analysis of human embryonic stem cells. BMC Genomics 2007, 8. 100. Prokhorova, T. A.; Rigbolt, K. T. G.; Johansen, P. T.; Henningsen, J.; Kratchmarova, I.; Kassem, M.; Blagoev, B., Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell. Proteomics 2009, 8, (5), 959-970. 101. Mizrak, D.; Brittan, M.; Alison, M. R., CD133: molecule of the moment. J. Pathol. 2008, 214, (1), 3-9. 102. Pfenninger, C. V.; Roschupkina, T.; Hertwig, F.; Kottwitz, D.; Englund, E.; Bengzon, J.; Jacobsen, S. E.; Nuber, U. A., CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007, 67, (12), 5727-5736. 103. Kania, G.; Corbeil, D.; Fuchs, J.; Tarasov, K. V.; Blyszczuk, P.; Huttner, W. B.; Boheler, K. R.; Wobus, A. M., Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 2005, 23, (6), 791-804. 104. Sperger, J. M.; Chen, X.; Draper, J. S.; Antosiewicz, J. E.; Chon, C. H.; Jones, S. B.; Brooks, J. D.; Andrews, P. W.; Brown, P. O.; Thomson, J. A., Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, (23), 13350-13355. 105. Zhang, M.; Wang, A. G.; He, W. H.; He, P.; Xu, A.; Xia, T.; Chen, X. L.; Yang, K. D., Effects of fluoride on the expression of NCAM, oxidative stress, and apoptosis in primary cultured hippocampal neurons. Toxicology 2007, 236, (3), 208-216. 106. Rutishauser, U.; Acheson, A.; Hall, A. K.; Mann, D. M.; Sunshine, J., The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions Science 1988, 240, (4848), 53-57. 107. Martino, M. M.; Mochizuki, M.; Rothenfluh, D. A.; Rempel, S. A.; Hubbell, J. A.; Barker, T. H., Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials 2009, 30, (6), 1089-1097. 108. Su, L.; Lv, X.; Xu, J. P.; Yin, D. L.; Zhang, H. Y.; Li, Y.; Zhao, J.; Zhang, S. L.; Miao, J. Y., Neural stem cell differentiation is mediated by integrin beta 4 in vitro. Int. J. Biochem. Cell Biol. 2009, 41, (4), 916-924. 109. Critchley, D. R.; Holt, M. R.; Barry, S. T.; Priddle, H.; Hemmings, L.; Norman, J., Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem. Soc. Symp. 1999, (65), 79-99. 110. Salasznyk, R. M.; Klees, R. F.; Williams, W. A.; Boskey, A.; Plopper, G. E., Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp. Cell Res. 2007, 313, (1), 22-37. 111. Silva, J. C.; Denny, R.; Dorschel, C. A.; Gorenstein, M.; Kass, I. J.; Li, G. Z.; McKenna, T.; Nold, M. J.; Richardson, K.; Young, P.; Geromanos, S., Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem. 2005, 77, (7), 2187-2200. 112. Qian, W. J.; Camp, D. G.; Smith, R. D., High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev. Proteomics 2004, 1, (1), 87-95. 113. Andreev, V. P.; Li, L. Y.; Cao, L.; Gu, Y.; Rejtar, T.; Wu, S. L.; Karger, B. L., A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS. J. Proteome Res. 2007, 6, (6), 2186-2194.
|