(3.236.214.19) 您好!臺灣時間:2021/05/09 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林雨毅
研究生(外文):Yu-Yi Lin
論文名稱:新穎銀羧酸化合物的水熱合成開發與生物毒性測試暨牛血清白蛋白之藥物輸送載體─中孔洞生物活性玻璃
論文名稱(外文):Novel Silver(I) carboxylate compounds development & MBGs as a drug carrier for BSA release
指導教授:林秀美林秀美引用關係
指導教授(外文):Hsiu-Mei Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:101
中文關鍵詞:水熱合成羧酸中孔洞生物活性玻璃牛血清白蛋白
外文關鍵詞:hydrothermalsilvercarboxylatemesoporousbioactive glassesBSA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Part I
利用配位基原位水熱合成 (Hydrothermal in situ ligand syntheses),以銀(Ag)、氰(CN)與疊氮化鈉(NaN3)混合物,合成具有羧酸(COOH)立體網絡結構的晶體:Ag2(μ3-Hbdc)0.5(μ4-Hbdc)0.5 (1),(H2bdc = 1,4-benzenedicarboxylic acid);所得之淡綠色晶體經由單晶X-光繞射分析得知為三斜晶系(Triclinic),空間群為P-1,a = 3.7498(2) A,b = 10.6948(6) A,c = 18.7318(11) A,α = 88.038(2)°,β = 85.150(2)°,γ = 84.565(2)°。此聚合物是由雙核的銀原子和兩個對苯二甲酸配位基所組成,雙核的Ag原子單位是藉由分子內的Ag–O鍵結合,沿著晶格a軸形成一維鏈狀(chain),並且具有類似階梯狀的結構。除此之外,每一個1D chain會進一步和其周圍的1D chain結合,透過另一個Ag–O鍵結形成二維的層狀(layer)結構。而在這個八元環(Ag2O4C2)聚合物chain的尾端有兩個氫鍵的存在。令人感興趣的是,2D layer彼此再藉由氫鍵的結合和配位基(Hbdc)上苯環間的π–π堆疊交互作用,形成一個三維(3D)網絡的結構。
在生物毒性的影響上,抗菌的實驗結果顯示化合物1大部分比硝酸銀(AgNO3)和對苯二甲酸(H2bdc)配位基表現出較佳的抑制效果。
Part II
整齊的中孔洞材料如MCM-41和SBA-15已經被成功的作為藥物遞送系統,它們具有可調整和一致性的孔洞尺寸、高表面積、大孔洞體積,因此可藉由中孔結構控制其藥物分子的釋放速率,然而,中孔洞材料具有較低生物活性,因為純的二氧化矽並不能直接進行骨組織的修補。近年來,中孔洞生物活性玻璃(MBGs)已經被成功的合成出來,這個新的生物活性材料家族,顯示出較好的骨形成生物活性,比起傳統的生物活性玻璃(BGs),中孔洞生物活性玻璃有較好的生物活性。
本論文研究中孔洞生物活性玻璃的藥物釋放特性,並且選擇牛血清白蛋白(BSA)作為藥物分子模型的釋放研究。
Part I 目錄
謝誌 i
中文摘要 ii
英文摘要 iii
目錄 iv
表目錄 vi
圖目錄 vii
化合物一覽表 viii
第一章 緒論 1
1-1 前言 1
1-2 銀金屬配位聚合物 2
1-3 羧酸配位基 3
1-3-1 醋酸的藥物作用 4
1-4 銀對生物活性之影響 6
1-5 革蘭氏陽性與陰性菌之特性比較 7
1-6 研究動機 11
第二章 實驗部份 12
2-1 水熱合成與配位基原位水熱合成 12
2-1-1 水熱合成(Hydrothermal synthesis) 12
2-1-2 配位基原位水熱合成(Hydrothermal in situ ligand
synthesis) 14
2-2 儀器原理 15
2-2-1 單晶X-光繞射 15
2-2-2 晶體結構解析 18
2-2-3 X-光粉末繞射 18
2-3 實驗藥品與材料 18
2-3-1 配位基原位水熱合成 18
2-4 實驗儀器 19
2-4-1 配位基原位水熱合成 19
2-5 製備Ag2(μ3-Hbdc)0.5(μ4-Hbdc)0.5 19
2-6 抗菌試驗 20
2-6-1培養基製備 20
2-6-2菌株的保存 20
2-6-3菌株活化與菌種製備 21
2-6-4抗菌性質試驗 21
第三章 結果與討論 23
3-1 Ag2(μ3-Hbdc)0.5(μ4-Hbdc)0.5基本骨架剖析 23
3-2 Ag2(μ3-Hbdc)0.5(μ4-Hbdc)0.5之三維網絡結構 25
3-2-1 Ag原子配位形式 25
3-2-2 八元環系統 26
3-3 抗菌性質試驗 29
3-4 結論 33
參考文獻 34
Part II 目錄
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 vi
圖目錄 vii
化合物一覽表 viii
第一章 緒論 1
1-1 前言 1
1-2 骨缺損修復材料 2
1-3 生物活性材料 3
1-3-1 生物活性定義 3
1-4 生物活性玻璃 3
1-4-1 生物活性玻璃簡介 3
1-4-2 生物活性玻璃合成方法 5
1-5 中孔洞材料 6
1-5-1 中孔洞材料的合成 7
1-5-2 中孔洞生物活性玻璃 9
1-6 藥物遞送 10
1-7 BSA簡介 12
1-8 研究動機 13
第二章 實驗部份 15
2-1 前言 15
2-2 實驗藥品與材料 15
2-3 實驗儀器 15
2-4 儀器原理 16
2-4-1 掃描式電子顯微鏡 16
2-4-2表面積暨孔洞分析儀 19
2-5 合成方法 24
2-5-1製備原理 24
2-5-2合成步驟 24
2-6 MBGs體外(in vitro)生物活性測試 25
2-7 牛血清白蛋白(BSA)吸附與釋放試驗 25
2-7-1載入方法 25
2-7-2 釋放方法 25
第三章 結果與討論 27
3-1 MBGs性質鑑定與討論 27
3-1-1 X光小角繞射 27
3-1-2 氮氣恆溫吸附脫附分析儀 28
3-1-3 29Si NMR固態圖譜 31
3-1-4 掃描式電子顯微鏡 31
3-2 牛血清白蛋白(BSA)之輸送測試 34
3-2-1 BSA載入試驗 34
3-2-2 BSA釋放試驗 35
3-3 結論 37
參考文獻 38
Part I
[1] (a) M. Fujita, M. Tominaga, A. Hori and B. Therrien, Accounts of Chemical Research 2005, 38, 369. (b) E. Menozzi, M. Busi, C. Massera, F. Ugozzoli, D. Zuccaccia, A. Macchioni and E. Dalcanale, Journal of Organic Chemistry 2006, 71, 2617.
[2] O. D. Fox, M. G. B. Drew and P. D. Beer, Angewandte Chemie-International Edition 2000, 39, 136.
[3] G. Givaja, A. J. Blake, C. Wilson, M. Schroder and J. B. Love, Chemical Communications 2005, 4423.
[4] S. Furukawa, T. Okubo, S. Masaoka, D. Tanaka, H. C. Chang and S. Kitagawa, Angewandte Chemie-International Edition 2005, 44, 2700.
[5] M. Du, X. J. Jiang and X. J. Zhao, Inorganic Chemistry 2006, 45, 3998.
[6] R. H. Wang, L. J. Xu, J. X. Ji, Q. Shi, Y. M. Li, Z. Y. Zhou, M. C. Hong and A. S. C. Chan, European Journal of Inorganic Chemistry 2005, 751.
[7] (a) B. Ye, M-L. Tong and X-M. Chen, Coordination Chemistry Reviews 2005, 249, 545. (b) J. Chen, M. Ohba, D. Zhao, W. Kaneko and S. Kitagawa, Crystal Growth & Design 2006, 6, 664.
[8] Y. Sevryugina, D. D. Vaughn and M. A. Petrukhina, Inorganica Chimica Acta 2007, 360, 3103.
[9] P. Lin, R.A. Henderson, R.W. Harrington, W. Clegg, C.D. Wu and X.T. Wu, Inorganic Chemistry 2004, 43, 181
[10] N. C. Kasuga, M. Sato, A. Amano, A. Hara, S. Tsuruta, A. Sugie and K. Nomiya, Inorganica Chimica Acta 2008, 361, 1267.
[11] (a) A. J. Blake, N. R. Champness, P. A. Cooke, J. E. B. Nicolson and C. Wilson, Journal of the Chemical Society, Dalton Transactions 2000, 3811. (b) N. J. Melcer, G. D. Enright, J. A. Ripmeester and G. K. H. Shimizu, Inorganic Chemistry 2001, 40, 4641.
[12] (a) D. F. Sun, R. Cao, W. H. Bi, J. B. Weng, M. C. Hong and Y. C. Liang, Inorganica Chimica Acta 2004, 357, 991. (b) D. R. Whitcomb and M. Rajeswaran, Polyhedron 2006, 25, 1747. (c) X. Li, B. L. Wu, W. Liu and H. Y. Zhang, Inorganic Chemistry Communications 2008, 11, 1308.
[13] (a) P.L. Caradoc-Davies and L.R. Hanton, Chemical Communications 2001, 1098. (b) I. Ino, L.P. Wu, M. Munakata, M. Maekawa, Y. Suenaga, T. Kuroda-Sowa and Y. Kitamori, Inorganic Chemistry 2000, 39, 2146.
[14] (a) M. Maekawa, H. Konaka, Y. Suenaga, T. Kuroda-Sowa and M. Munakata, Journal of the Chemical Society, Dalton Transactions 2000, 4160. (b) M.L. Tong, S.L. Zheng and X.M. Chen, Chemistry - A European Journal 2000, 6, 3729.
[15] O. Kristiansson, Inorganic Chemistry 2001, 40, 5058.
[16] L. Pan, E.B. Woodlock, X.T. Wang, K.C. Lam and A.L. Rheingold, Chemical Communications 2001, 1762.
[17] C. Policar, F. Lambert, M. Cesario and I. Morgenstern-Badarau, European Journal of Inorganic Chemistry 1999, 2201.
[18] R. Cao, D.F. Sun, Y.C. Liang, M.C. Hong, K. Tatsumi and Q. Shi, Inorganic Chemistry 2002, 41, 2087.
[19] D.F. Sun, R. Cao, Y.C. Liang, Q. Shi and M.C. Hong, Journal of the Chemical Society, Dalton Transactions 2002, 1847.
[20] M. Eddaoudi, H.L. Li and O.M. Yaghi, Journal of the American Chemical Society 2000, 122, 1391.
[21] S.O. Gutschke, D.J. Price, A.K. Powell and P.T. Wood, European Journal of Inorganic Chemistry 2001, 2739.
[22] G. Smith, A.N. Reddy, K.A. Byriel and C.H.L. Kennard, Journal of the Chemical Society, Dalton Transactions 1995, 3565.
[23] N. C. Kasuga, R. Yamamoto, A. Hara, A. Amano and K. Nomiya, Inorganica Chimica Acta 2006, 359, 4412.
[24] D.R. Whitcomb and M. Rajeswaran, Polyhedron 2006, 25, 1747.
[25] D. R. Whitcomb and M. Rajeswaran, Inorganica Chimica Acta 2008, 361, 1357.
[26] A.D. Russell and W.B. Hugo, Progress in Medicinal Chemistry 1994, 31, 351.
[27] Z. Guo and P.J. Sadler, Angewandte Chemie International Edition 1999, 38, 1512.
[28] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim, Journal of Biomedical Materials Research 2000, 52, 662.
[29] M.C. Gimeno and A. Laguna, Comprehensive Coordination Chemistry II, Vol. 6, Elsevier, Oxford, 2004.
[30] S. Ahmad, A.A. Isab, S. Ali and A.R. Al-Arfaj, Polyhedron 2006, 25, 1633.
[31] R. Noguchi, A. Hara, A. Sugie and K. Nomiya, Inorganic Chemical Communications 2006, 9, 60.
[32] C.M. Fitchett and P.J. Steel, Dalton Transactions 2006, 4886.
[33] E. Barreiro, J. S. Casas, M. D. Couce, and E. M. Vazquez-Lopez, European Journal of Medicinal Chemistry 2008, 43, 2489.
[34] (a) A.D. Russell and W.B. Hugo, Progress in Medicinal Chemistry 1994, 31, 351. (b) S.Y. Liau, D.C. Read, W.J. Pugh, J.R. Furr and A.D. Russell, Letters in Applied Microbiology 1997, 25, 279.
[35] B. Samuel, Medical Microbiology: The University of Texas Medical Brand of Galvestion, 1996.
[36] X. M. Zhang, Coordination Chemistry Reviews 2005, 249, 1201.
[37] (a) X. M. Zhang, M. L. Tong, M. L. Gong, H. K. Lee, L. Luo, K. F. Li, Y. X. Tong and X. M. Chen, Chemistry (Weinheim an der Bergstrasse, Germany) 2002, 8, 3187. (b) S. L. Zheng, J. P. Zhang, W. T. Wong and X. M. Chen, Journal of the American Chemical Society 2003, 125, 6882.
[38] (a) A. J. Blake, N. R. Champness, S. S. M. Chung, W. S. Li and M. Schroder, Chemical Communications 1997, 1675. (b) X. M. Zhang, J. J. Hou and H. S. Wu, Dalton Trans 2004, 3437.
Part II
[1] (a) L. L. Hench, R. J. Splinter, W. C. Allen and T. K. Greenlee, Journal of Biomedical Materials Research 1971, 2, 117. (b) L. L. Hench, Biomaterials: a forecast for the future 1998, 1419.
[2] L. L. Hench, Bioceramics: from concept to clinic, Journal of the American Ceramic Society 1991, 74, 1487.
[3] (a) L. L. Hench, Journal of Biomedical Materials Research 1998, 41, 511. (b) L. L. Hench, J.M. Polak . Science 2002, 295, 1014.
[4] M. Vallet-Regi, C. V. Ragel, and A. J. Salinas, European Journal of Inorganic Chemistry 2003, 6, 1029.
[5] K. D. Lobel and L. L. Hench, Journal of Biomedical Materials Research 1998, 39, 575.
[6] M. Wang, L. L. Hench and W. Bonfield, Journal of Biomedical Materials Research 1998, 42, 577.
[7] G. Jell, I. Notingher, O. Tsigkou, P. Notingher, J. M. Polak, L. L. Hench and M. M. Stevens, Journal of Biomedical Materials Research Part A 2008, 86A, 31.
[8] H. M. Kim, F. Miyaji, T. kobubo and T. Nakamura, Journal of Biomedical Materials Research 1997, 38. 121.
[9] H. M. Kim, F. Miyaji, T. kobubo and T. Nakamura, Journal of Materials Science: Materials in Medicine 1997, 8. 341.
[10] M. Vallet-Regi, I. Izquierdo-Barba and F. J. Gil, Journal of Biomedical Materials Research Part A 2003, 67A. 674.
[11] T. Kobubo, Acta Materialia 1998, 46, 2519.
[12] J. Korventausta, M. Jokinen, A. Rosling, T. Peltola and A. Yli-Urpo, Biomaterials 2003, 24, 5173.
[13] W. P. Cao, L. L. Hench, Ceramics International 1996, 22, 493.
[14] L. L. Hench, Chemistry & Industry 1995. 547.
[15] J. M. Gomez-Vega, A. Hozumi, E. Saiz, A. P. Tomsia, H. Sugimura and O. Takai, Journal of Biomedical Materials Research 2001, 56, 382.
[16] J. M. Gomez-Vega, A. Hozumi, H. Sugimura and O. Takai, Advanced Materials 2001, 13, 822.
[17] N. Moritz, M. Jokinen, T. Peltola, S. Areva and A. Yli-Urpo, Journal of Biomedical Materials Research Part A 2003, 65A, 9.
[18] A. J. Salinas, J. M. Merino, N. Hijon, A. I. Martin and M. Vallet-Regi, in Bioceramics, Vol 16, Vol. 254-2, TRANS TECH PUBLICATIONS LTD, Zurich-Uetikon, 2004, pp. 481.
[19] (a) P. Ducheyne, S. Radin and L. King, Journal of Biomedical Materials Research 1993, 27, 25. (b) S. R. Radin, P. Ducheyne and L. King, Journal of Biomedical Materials Research 1993, 27, 35.
[20] T. Kobubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro, Journal of Biomedical Materials Research 1990, 24, 721.
[21] T. Kobubo, Biomaterials 1991, 12, 155.
[22] J. A. Juhasz, S. M. Best, W. Bonfield, M. Kawashita, N. Miyata, T. Kobubo and T. Nakamura, Journal of Materials Science: Materials in Medicine 2003, 14, 489.
[23] J. P. Zhong and D. C. Greenspan, Journal of Biomedical Materials Research 2000, 53A, 694.
[24] T. Kobubo, S. Ito and S. Sakka, Journal of Materials Science 1986, 21, 536.
[25] W. Vogel and W. Holand, Journal of Non-Crystalline Solids 1990, 123, 349.
[26] M. E. Davis, Nature 2002, 417, 813.
[27] (a) J. Y. Ying, C.P. Mehnert and M. S. Wong, Angewandte Chemie-International Edition 1999, 38, 56 U. (b) Ciesla and F. Schuth, Microporous and Mesoporous Materials 1999, 27, 131.
[28] S. W. Song, K. Hidajat and S. Kawi, Langmuir 2005, 21, 9568.
[29] B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz and M. Vallet-Regi, Chemistry of Materials 2003, 15, 500.
[30] C. Tourne-Peteilh, D. A. Lerner, C. Charnay, L. Nicole, S. Begu and J.M. Devoisselle, Chemphyschem 2003, 4, 281.
[31] D. R. Radu, C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija and V. S. Y. Lin, Journal of the American Chemical Society 2004, 126, 13216.
[32] C. Barbe, J. Bartlett, L. G. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush and G. Calleja, Advanced Materials 2004, 16, 1959.
[33] C. Y. Lai, B. G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V.S.Y. Lin, Journal of the American Chemical Society 2003, 125, 4451.
[34] S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D.H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, Journal of the American Chemical Society 1992, 114, 10834.
[35] (a) D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky, Journal of the American Chemical Society 1998, 120, 6024. (b) D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 1998, 279, 548.
[36] P. Schmidt-Winkel, W. W. Lukens, D. Y. Zhao, P. D. Yang, B. F. Chmelka and G.D. Stucky, Journal of the American Chemical Society 1999, 121, 254.
[37] Y. M. Liu, W. L. Feng, T. C. Li, H. Y. He, W. L. Dai, W. Huang, Y. Cao and K. N. Fan, Journal of Catalysis 2006, 239, 125.
[38] D. T. On and S. Kaliaguine, Journal of the American Chemical Society 2003, 125, 618.
[39] F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angewandte Chemie-International Edition 2006, 45, 3216.
[40] (a) Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. SchEth and G. D. Stucky, Nature 1994,368, 317. (b) Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E.Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. SchEth, G. D. Stucky, Chemistry of Materials, 1994, 6, 1176.
[41] (a) M. M. Pereira, A. E. Clark and L. L Hench, Journal of the American Ceramic Society 1995, 78, 2463. (b) M. M. Pereira and L.L Hench, Journal of Sol-Gel Science and Technology 1996, 7, 59.
[42] X. X. Yan, C. Z. Yu, X. F. Zhou, J. W. Tang and D. Y. Zhao, Angewandte Chemie-International Edition 2004, 43, 5980.
[43] (a) A. Martini and C. Ciocca, Expert Opinion on Therapeutic Patents 2003, 13, 1801. (b) C. Oussoren and G. Storm, Advanced Drug Delivery Reviews 2001, 50, 143. (c) D. L. Emerson, Pharm Sci Technolo Today 2000, 3, 205.
[44] K. Kataoka, A. Harada and Y. Nagasaki, Advanced Drug Delivery Reviews 2001, 47, 113.
[45] A. D. Abu-Rmaileh R, D'Emanuele A, DRUG DELIVERY systems & sciences 2003, 3.
[46] K. S. Soppimath, T.M. Aminabhavi, A. R. Kulkarni and W. E. Rudzinski, Journal of Controlled Release 2001, 70, 1.
[47] Y. Wei, J. G. Xu, Q. W. Feng, H. Dong and M. D. Lin, Materials Letters 2000, 44, 6.
[48] K. S. Finnie, J. R. Bartlett and J. L. Woolfrey, Journal of Materials Chemistry 2000, 10, 1099.
[49] S. Boninsegna, P. Bosetti, G. Carturan, G. Dellagiacoma, R. Dal Monte and M. Rossi, Journal of Biotechnology 2003, 100, 277.
[50] (a) A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. P. Pariente, I. Izquierdo-Barba and M.Vallet-Regi, Journal of Controlled Release 2004, 97, 125. (b) J. Andersson, J. Rosenholm, S. Areva and M. Linden, Chemistry of Materials 2004, 16, 4160. (b) A. Ramila, B. Munoz, J. Perez-Pariente and M. Vallet-Regi, Journal of Sol-Gel Science and Technology 2003, 26, 1199. (c) M. Vallet-Regi, A. Ramila, R. P. del Real and J. Perez-Pariente, Chemistry of Materials 2001, 13, 308.
[51] C. Tourne-Peteilh, D. Brunel, S. Begu, B. Chiche, F. Fajula, D. A. Lerner and J. M. Devoisselle, New Journal of Chemistry 2003, 27, 1415.
[52] J. Brouwers, Pharmacy World & Science 1996, 18, 153.
[53] D. D. Breimer, Advanced Drug Delivery Reviews 1998, 33, 265.
[54] W. Xia and J. Chang, Journal of Controlled Release 2006, 110, 522
[55] L. Z. Zhao, X. X. Yan, X. F. Zhou, L. Zhou, H. N. Wang, H. W. Tang and C. Z. Yu, Microporous and Mesoporous Materials 2008, 109, 210.
[56] Y. Fan, P. P. Yang, S. S. Huang, J. H. Jiang, H. Z. Lian and J. Lin, Journal of Physical Chemistry C 2009, 113, 7826.
[57] C. Wu, Y. Ramaswamy, Y. F. Zhu, R. Zheng, R. Appleyard, A. Howard and H. Zreiqat, Biomaterials 2009, 30, 2199.
[58] P. Saravanapavan, J.R. Jones, R.S. Oryce and L.L. Hench, Journal of Biomedical Materials Research 2003, 66A, 110.
[59] S. W. Song, K. Hidajat and S. Kawi, Langmuir 2005, 21, 9568.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔