( 您好!臺灣時間:2021/05/10 13:45
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chun-Ta Ma
論文名稱(外文):The function of zebrafish arnt2 gene in glial cell development
指導教授(外文):Chin-Hwa HuTsou-Shiung Wen
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
先前的研究發現arnt2基因的弱化會對神經膠細胞的發育造成影響,在此實驗中首先在利用兩種專一性morpholino(arnt2 MO2)弱化arnt2基因,藉以確認先前第一種arnt2 morpholino弱化對胚胎所造成的影響。結果證實無論以任一種專一性morpholino弱化arnt2,均會抑制少突神經膠細胞、星狀細胞、許旺細胞發育以及放射神經膠細胞等神經膠細胞的分化。同時也以組織切片證實arnt2弱化抑制mbp表現影響了髓鞘的變化。
During embryogenesis,the processes of cell differentiation, organogenesis and response to environmental stimulation are all controlled by various gene regulation system. The bHLH-PAS protein family play important roles in vertebrate development 、xenobiotic metabolism and hormone signal transduction. In the bHLH-PAS mediated pathway, ARNT can dimerize with AHR 、HIF and SIM to regulate variety gene. It was shown that repression of arnt2 gene caused severe defect in neuron development.
Previously,it was shown that blacking arnt2 translation resulted in sever defect of glial cell development. In here, we use two different arnt2 morpholino (MO2) to verify the function of arnt2 on glial cell development if appear that. the two new arnt2 morpholino blacked gilal cell development including olgodendrocyte、astrocyte、shwann cell and radil glial cell differention like previous arnt2 morpholino did. we have also confirned that arnt2 knockdown inhibited mbp expression and suppress myelin sheath formation.
摘要 i
Abstract ii
壹、前言 1
一、 bHLH-PAS蛋白與胚胎發育的關係 1
二、 神經和神經膠細胞的差異: 2
三、 神經膠細胞對於突觸的生長影響: 3
四、 神經膠細胞: 4
貳、實驗材料與方法 12
一. 實驗材料 12
二、實驗方法 18
?、結果 34
A.弱化arnt2基因表現對於少突神經膠細胞發育的影響 34
B.弱化arnt2基因表現對於星狀細胞發育的影響 35
C.弱化arnt2基因表現對於放射神經膠細胞發育的影響 35
D.弱化arnt2基因表現對於許旺細胞發育的影響 36
E.弱化arnt2基因表現對於髓鞘發育影響 36
肆、討論 38
弱化arnt2基因表現對於少突神經膠細胞發育影響: 38
弱化arnt2基因表現對於星狀細胞發育影響: 39
弱化arnt2基因表現對於放射神經膠細胞發育影響: 39
弱化arnt2基因表現對於許旺細胞發育影響: 40
弱化arnt2基因表現對於髓鞘發育影響: 40
伍、參考文獻 41
陸、圖表 45
Allen, N. J. and Barres, B. A. (2005). Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15, 542-548.
Alvarez-Buylla, A., Seri, B. and Doetsch, F. (2002). Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57, 751-758.
Araque, A., Carmignoto, G. and Haydon, P. G. (2001). Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63, 795-813.
Antanitus, D. S., Choi, B. H. and Lapham, L. W. (1975). Immunofluorescence staining of astrocytes in vitro using antiserum to glial fibrillary acidic protein. Brain Res 89, 363-367.
Barres, B. A. (2003). What is a glial cell? Glia 43, 4-5.
Bergmann, A., Tugentman, M., Shilo, B. Z. and Steller, H. (2002). Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev Cell 2, 159-170.
Bignami, A., Eng, L. F., Dahl, D. and Uyeda, C. T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43, 429-435.
Britsch, S., Goerich, D. E., Riethmacher, D., Peirano, R. I., Rossner, M., Nave, K. A., Birchmeier, C. and Wegner, M. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15, 66-78.
Burbach, J. P. and Meijer, O. C. (1992). The structure of neuropeptide receptors. Eur J Pharmacol 227, 1-18..
Chen, S. Y., Hsieh, C. S., Chu, S. W., Lin, C. Y., Ko, C. Y., Chen, Y. C., Tsai, H. J., Hu, C. H. and Sun, C. K. (2006). Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J Biomed Opt 11, 054022.
Choi, B. H. (1981). Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Brain Res 227, 249-267.
Dahl, D., Bignami, A., Weber, K. and Osborn, M. (1981). Filament proteins in rat optic nerves undergoing Wallerian degeneration: localization of vimentin, the fibroblastic 100-A filament protein, in normal and reactive astrocytes. Exp Neurol 73, 496-506.
Dong, Z., Brennan, A., Liu, N., Yarden, Y., Lefkowitz, G., Mirsky, R. and Jessen, K. R. (1995). Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15, 585-596.
Dong, Z., Sinanan, A., Parkinson, D., Parmantier, E., Mirsky, R. and Jessen, K. R. (1999). Schwann cell development in embryonic mouse nerves. J Neurosci Res 56, 334-348
Doetsch, F. (2003). The glial identity of neural stem cells. Nat Neurosci 6, 1127-1134.
Ema, M., Sogawa, K., Watanabe, N., Chujoh, Y., Matsushita, N., Gotoh, O., Funae, Y. and Fujii-Kuriyama, Y. (1992). cDNA cloning and structure of mouse putative Ah receptor. Biochem Biophys Res Commun 184, 246-253.
Fan, W. Q., Smolich, J. J., Wild, J., Yu, V. Y. and Walker, A. M. (1996). Nitric oxide modulates regional blood flow differences in the fetal gastrointestinal tract. Am J Physiol 271, G598-604.
Gabay, L., Lowell, S., Rubin, L. L. and Anderson, D. J. (2003). Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485-499.
Gray, G. E. and Sanes, J. R. (1991). Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211-225.
Herrera, A. A., Qiang, H. and Ko, C. P. (2000). The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis). J Neurobiol 45, 237-254.
Jessen, K. R., Brennan, A., Morgan, L., Mirsky, R., Kent, A., Hashimoto, Y. and Gavrilovic, J. (1994). The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12, 509-527.
Jessen, K. R. and Mirsky, R. (2002). Signals that determine Schwann cell identity. J Anat 200, 367-376.
Kang, J., Jiang, L., Goldman, S. A. and Nedergaard, M. (1998). Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1, 683-692.
Kazakova, N., Li, H., Mora, A., Jessen, K. R., Mirsky, R., Richardson, W. D. and Smith, H. K. (2006). A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol 297, 1-13.
Kewley, R. J., Whitelaw, M. L. and Chapman-Smith, A. (2004). The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36, 189-204.
Le Douarin, N., Dulac, C., Dupin, E. and Cameron-Curry, P. (1991). Glial cell lineages in the neural crest. Glia 4, 175-184.
Le Douarin, N. M. and Dupin, E. (2003). Multipotentiality of the neural crest. Curr Opin Genet Dev 13, 529-536.
Liu, Q. S., Xu, Q., Arcuino, G., Kang, J. and Nedergaard, M. (2004). Astrocyte-mediated activation of neuronal kainate receptors. Proc Natl Acad Sci U S A 101, 3172-3177.
Lu, Q. R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C. D. and Rowitch, D. H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75-86.
Menuet, A., Pellegrini, E., Brion, F., Gueguen, M. M., Anglade, I., Pakdel, F. and Kah, O. (2005). Expression and estrogen-dependent regulation of the zebrafish brain aromatase gene. J Comp Neurol 485, 304-320.
Michaud, J. L., DeRossi, C., May, N. R., Holdener, B. C. and Fan, C. M. (2000). ARNT2 acts as the dimerization partner of SIM1 for the development of the hypothalamus. Mech Dev 90, 253-61.
Mission, J. P., Takahashi, T. and Caviness, V. S., Jr. (1991). Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia 4, 138-148.
Pellerin, L. and Magistretti, P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91, 10625-10629.
Pellegrini, E., Mouriec, K., Anglade, I., Menuet, A., Le Page, Y., Gueguen, M. M., Marmignon, M. H., Brion, F., Pakdel, F. and Kah, O. (2007). Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 501, 150-167.
Pellerin, L., Pellegri, G., Bittar, P. G., Charnay, Y., Bouras, C., Martin, J. L., Stella, N. and Magistretti, P. J. (1998). Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20, 291-299.
Peters, A., Josephson, K. and Vincent, S. L. (1991). Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec 229, 384-398.
Pfrieger, F. W. and Barres, B. A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684-1687.
Pollard, S. M. and Conti, L. (2007). Investigating radial glia in vitro. Prog Neurobiol 83, 53-67.
Reddy, L. V., Koirala, S., Sugiura, Y., Herrera, A. A. and Ko, C. P. (2003). Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40, 563-580.
Rowitch, D. H. (2004). Glial specification in the vertebrate neural tube. Nat Rev Neurosci 5, 409-419.
Shang, E. H., Yu, R. M. and Wu, R. S. (2006). Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40, 3118-3122.
Song, H., Stevens, C. F. and Gage, F. H. (2002). Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39-44.
Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U. and Wegner, M. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 16, 165-170.
Takahashi, M. and Osumi, N. (2005). Identification of a novel type II classical cadherin: rat cadherin19 is expressed in the cranial ganglia and Schwann cell precursors during development. Dev Dyn 232, 200-208.
Ullian, E. M., Christopherson, K. S. and Barres, B. A. (2004a). Role for glia in synaptogenesis. Glia 47, 209-216.
Ullian, E. M., Harris, B. T., Wu, A., Chan, J. R. and Barres, B. A. (2004b). Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol Cell Neurosci 25, 241-251.
Wanner, I. B., Guerra, N. K., Mahoney, J., Kumar, A., Wood, P. M., Mirsky, R. and Jessen, K. R. (2006). Role of N-cadherin in Schwann cell precursors of growing nerves. Glia 54, 439-459.
Woodhoo, A. and Sommer, L. (2008). Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56, 1481-1490.
Zhou, Q. and Anderson, D. J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61-73.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔