(3.238.173.209) 您好!臺灣時間:2021/05/16 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:詹明達
研究生(外文):Ming-Ta Chan
論文名稱:南海和熱帶西太平洋之全新世氣候變遷:多種有孔蟲穩定同位素證據(MD972146&MD052928)
論文名稱(外文):Holocene climate change of the South China Sea and Tropical Western Pacific: Multiple Foraminiferal Stable Isotope Evidence (MD972146 & MD052928)
指導教授:陳明德陳明德引用關係
指導教授(外文):Min-Te Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:55
中文關鍵詞:西太平洋暖池浮游性有孔蟲全新世
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
低緯度海洋是全球的熱與水氣的儲存所,在大氣與海洋的交互作用上扮演著重要的角色。西太平洋暖池及東亞季風這兩大海洋與氣候系統不僅影響東亞氣候,亦主控全球氣候的變化。本研究選取位處於西太平洋暖池邊緣區之兩高解析度活塞式海洋沉積物岩心:MD972146(南海)及MD052928(新幾內亞東南外海),藉由分析不同水深棲息性之浮游有孔蟲殼體的氧穩定同位素,重建全新世以來西太平洋暖池區南、北界表層海洋的層化變化,進而據以了解所反映的暖池區與季風氣候變化。本研究利用浮游有孔蟲表層水種(Globigerinoides ruber s.s.、Globigerinoides sacculifer)與溫躍層水種(Globorotalia menardii、Neogloboquadrina dutertrei)的氧同位素差值(Δ��18O溫躍層水種-表層水種),估測表層水層化–水深溫度梯度及溫躍層深度變化。本研究發現在全新世早期(10,000–6000 B.P.),南海的氧同位素差值較全新世中晚期(6000–0 B.P.)大,可能反映全新世早期東亞夏季季風增強與降雨量增加所導致的表層水層化。相對的,本研究分析的資料顯示熱帶西太平洋全新世中晚期的氧同位素差值較全新世早期大。本研究基於有限的多種有孔蟲穩定同位素資料,假設自全新世早期至中晚期,西太平洋的間熱帶輻合帶的平均位置可能有逐漸向南遷移的趨勢,導致熱帶西太平洋暖池南緣之降雨逐漸增加,表層水層化亦逐漸增強;相對的,南海的表層層化則逐漸減弱。全新世的全球氣候變化反映在熱帶大西洋邊緣海的鈦含量指標及中國大陸東南的董歌洞穴沉積物之氧同位素記錄呈現間熱帶輻合帶在全新世逐漸南移的趨勢,與基於本研究展示的證據所得的推論一致。
The low-latitude oceans play a very important role in atmosphere and ocean interaction. Two climate components, the West Pacific Warm Pool and the Asia monsoon not only affect climate in the Asia, but also control the global climate. This study uses two high resolution cores, one located in the northern margin of West Pacific Warm Pool (MD972146), another located in the southern margin of the warm pool (MD052928), and analyzes stable oxygen isotopes of planktic foraminfers with different depth habitats, to reconstruct stratification changes of the surface oceans in the West Pacific Warm Pool throughout the Holocene. The planktic foraminferas species used in this study are: Globigerinoides ruber, Globigerinoides sacculifer (mixed-layer species), and Globorotalia menardii, Neogloboquadrina dutertrei (thermocline species). The gradients between the mixed-layer species and thermocline species (Δ��18Othermocline-mixed layer) are used to reflect the stratification changes of surface oceans. This study observes that in the early Holocene (10,000–6000 B.P.), the stable oxygen isotope gradients in the South China Sea in the early Holocene (10,000 – 6000 B.P.) are larger than that in the late Holocene (6000 – 0 B.P.), reflecting probably increases in the Asia summer monsoon wind and precipitation. In contrast, the isotope gradients in the western Pacific in the late Holocene are larger than that in the early Holocene. This study hypothesizes, based on the multiple planktic foraminifer isotope evidence, the Intertropical Convergence Zone (ITCZ) has been migrated southward throughout the Holocene. What this study infers is consistent with Holocene climate changes interpreted from ocean records from the Cariaco Basin, tropical Atlantic Ocean, and stalagmite records from Dongge Cave in eastern China.
一、緒論…………………………………………………………………………..…..1
1.1西太平洋暖池區自全新世以來的氣候…………………………………….1
1.2研究區域背景……………………………………………………………….2
1.3 研究目的……………………………………………………………………4
二、資料與方法………………………………………………………………………..5
2.1 岩心樣本與分析……………………………………………………………5
2.2 有孔蟲穩定同位素換算公式………………………………………………7
2.3 年代模式的建立……………………………………………………………8
三、結果…………………………………………………………………………..…..9
3.1 浮游性有孔蟲之水體垂直分布……………………………………………9
3.2 多種浮游性有孔蟲穩定氧同位素變化…………………………………..10
3.3 溫躍層-混合層梯度變化…………………..……………………………..11
3.4 中研院與成大數據比較…………………………………………………..11
四、討論…………………………………………………………………………..…..12
4.1 西太平洋暖池南北水溫差異……………………………………………..12
4.2 西太平洋暖池全新世氣候………………………………………………..12
4.3、西太平洋暖池千年尺度上的變化…………………………………..……14
五、結論…………………………………………………………………………..…..16
參考文獻…………………………………………………………………………..…17
表目錄
表一、MD972146定年表……………………………………………………………21
圖目錄
圖一、ITCZ季節性位置圖………………………………………………..…………22
圖二、岩心MD972146及MD052928位置圖……………………………………..22
圖三、董哥洞及Cariaco Basin位置圖……………………………………………..23
圖四、岩心MD972146及MD052928年代模式與沉積速率圖…………………..24
圖五、浮游性有孔蟲棲息深度示意圖………………….. ………………….. ……25
圖六、MD972146四種浮游有孔蟲穩定氧同位素對年代圖及混合層種屬與溫躍層種屬平均圖…………………………………………………………………..26
圖七、MD052928四種浮游有孔蟲穩定氧同位素對年代圖及混合層種屬與溫躍層種屬平均圖…………………………………………………………………..27
圖八、MD972146 N. dutertrei數據比較圖……………………………………….....28
圖九、MD972146 G. menardii數據比較圖……………………………………….…29
圖十、MD052928 N. dutertrei數據比較圖……………………………………..…...30
圖十一、MD052928 N. dutertrei數據比較圖……………………………….……...31
圖十二、暖池南北緣氧同位素差值、董哥洞石筍氧同位素、Cariaco Basin鈦含量以及南北緯夏季日照量比較圖…………………………………………..32
圖十三、全新世ITCZ遷移示意圖…………………………………………………33

附錄一 MD972146穩定氧同位素數值………………………………………….....34
附錄二 MD052928穩定氧同位素數值…………………………………………….44
陳致維,2003,西太平洋暖池晚第四紀浮游有孔蟲氧同位素地層紀錄。國立台灣大學地質科學研究所碩士論文,共60頁。
林大成,2005,南海北部晚第四紀IMAGES岩心高解析度生物源沉積記錄:MD972146。國立台灣海洋大學應用地球科學研究所碩士論文,共120頁。
劉瓊惠,2005,南海IMAGES高解析度岩心MD972146之全新世浮游有孔蟲記錄,共75頁。
Bard, E., 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography, 3(6), 635–645.
Beger A., 1978. Long term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Science, 35(12), 2362-2367.
Bemis, B.E., Spero, H.J., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2), 150-160.
Benway, H.M., Mix, A.C., Haley, B. A., Klinkhammer, G.P., 2006. Eastern Pacific Warm Pool paleosalinity and global climate variability: 0-30 kyr. Paleoceanography, 21, 3008, doi:10.1029/2005PA001208.
Chen, M.-T., Huang, C.-C., Pflaumann, U., Waelbroeck, C., Kucera, M., 2005. Estimating glacial western Pacific sea-surface temperature: Methodological overview and data compilation of surface sediment planktic foraminifer faunas. Quaternary Science Reviews, 24, 1049-1062.
Dykoski, C.A., Edward, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Latters, 233, 71-86.
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southward migration of the intertropical Convergence Zone through the Holocene. Science, 293, 1304-1308.
Higginson, J.D., Imbrie J., Shackleton, N.J., 1976. Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science, 194, 1121-1132.
Kawahata, H., Nishimura, A., Gagan, M.K., 2002. Seasonal change in forminiferal production in the western equatorial Pacific warm pool: Evidence from sediment trap experiments. Deep-Sea Research II, 49, 2783-2800.
Koutavas, A., deMenocal, P.B., Olive, G.C., Jean, L.S., 2006. Mid-Holocene El Nino-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology, 993-996.
Labeyrie, L.D., Duplessy, J.C., and Blanc, P.L., 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature, 327, 477-482.
Lin, Y.S., Wei, K.Y., Lin, I.T., Yu, P.S., Chiang, H.W., Chen, C.Y. Shen, C.C. Mii, H.S., Chen, Y.G., 2006. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current. Marine Micropaleontology, 1-18.
Lin, H.L., Hsieh, H.Y., 2007. Seasonal variations of modern planktonic foraminifera in the South China Sea. Deep-Sea Research II, 54, 1634-1644.
Lin, H.L., Wang, W.C., Hung, G.W., 2004. Seasonal variation of planktonic foraminiferal isotope composition from sediment traps in the South China Sea. Marine Micropaleontology, 53, 447-460.
Martinez, J.I., Deckker, P.D., Chivas, A.R., 1997. New estimates for salinity changes in the western Pacific Warm Pool during the Last Glacial Maximum: Oxygen-isotope evidence. Marine Micropaleontology, 32, 311-340.
Martinez,I., Keigwin, L., Barrows, T.T., Yokoyama, Y., Southon, J., 2003. La Nina-like conditions in th eastern equatorial Pacific and a stronger Choco jet in the northern Andes during the last glaciation. Paleoceanography, 18(2), 1033, doi: 10.1029/2002PA000877.
National Oceanic and Atmospheric Administration (NOAA), 2005. World Ocean Atlas 2005. National Oceanographic Data Center, NOAA, Washington, D.C.
Partin, J.W., Cobb, K.M., Banner, 2008. Climate variability recorded in tropical and sub-tropical speleothems. Science, 16 3, 9
Spero, H.J., Mielke, K.M., Kalve, E.M., and Lea, D.W., 2003. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr. Paleoceanography, 18(1), 1022, doi: 10.1029.2002PA000814.
Steph, S., Regenberg, M., Tiedemann, R., Mulitza, S., and Nurnberg, D., 2009. Stable isotope of planktonic foraminifera from tropical Atlantic/Caribbean coretops: Implications for reconstructing upper ocean stratification. Marine Micropaleontology, 71, 1-19.
Stuiver, M., Reimer, P.J., and Reimer, R.W. 2005. CALIB 5.0.2 [WWW program and documentation].
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Review, 21, 295-305.
Wang, L., Sarnthein, M., Duplessy, J.C., Erlenkeuser, H., Jung, S., and Pflaumann, U., 1995. Paleo sea surface salinities in the low latitude Atlantic: The δ18O record of Globigerinoides ruber (white). Paleoceanography, 10, 749-761.
Wanner, H., Beer, J., Butikofer, J., Crowley, T.J., Cubasch, U., Fluckiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Kuttel, M., Muller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., Widmann, M., 2008. Mid- to Late Holocene climate change: An overview. Quaternary Science Reviews, 27, 1791-1828.
Yamasaki, M., Sasaki, A., Oda, M., Domitsu, H., 2008. Westen equatorial Pacific planktic foraminiferal fluxes and assemblages during a La Nina year (1999). Marine Micropaleontology, 66, 304-319.
Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., Hang, G.H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74-77.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top