跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林怡君
研究生(外文):Yi-Chun Lin
論文名稱:沸石除銨機制之探討
論文名稱(外文):Probing mechanisms of zeolites removing ammonium
指導教授:陳惠芬陳惠芬引用關係
指導教授(外文):Huei-Fen Chen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:離子交換物理性吸附除銨機制Langmuir Isotherm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:536
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要可應用在水產養殖中,當水中NH3濃度高於0.05~0.2 ppm時會造成魚類急性死亡,因此如何利用沸石有效降低水中NH4+濃度至安全範圍為本研究之肇始。其二,前人研究以沸石進行選擇性吸附,僅止於探討各沸石在各離子間的反應平衡式,並未對其離子交換和吸附作用之受控因素做進一步的探討。本研究的銨離子水溶液起始濃度為20 mg/l、50 mg/l以及100 mg/l,將500 ml之銨離子水溶液與5 g沸石粉末進行除銨反應。沸石種類包括絲光沸石( Mordenite )、菱沸石( Chabazite )、毛沸石( Erionite )、斜髮沸石( Clinoptilolite )與鋇十字沸石( Merlinoite )、Zeolite(P沸石)。再利用感應耦合電漿原子放射光譜儀與分光光度計測量出Na+、K+、Ca2+以及NH4+之終點濃度來解釋除銨的行為機制,並藉由電子微探儀得知沸石之化學組成。
沸石的除銨機制區分為離子交換及物理性吸附,在20 mg/l 主要是以離子交換為主,隨濃度的增加離子交換作用降低百分比,而物理吸附作用的百分比卻逐漸提高,因此起始濃度的高低會影響沸石除銨作用。
本實驗在28~32℃與 pH 6~9的條件下,所有沸石皆可將濃度降低於28 mg/l以下,可適用於25~30℃ (pH 7.0)之37.670~26.306 mg/l條件下。20 mg/l的反應起始濃度中Chabazite、Erionite與P 沸石可低於 NH4+1.32 mg/l以下,可應用於pH值高達8.3的環境;起始濃度為50 mg/l時,僅Chabazite濃度可以降至4.812 mg/l,可達pH值7.8之環境使用,其他沸石仍舊不適用於pH值7.8以上;100 mg/l的反應起始濃度,所有沸石僅能適用於pH值7.0以下的環境。
在沸石除銨機制方面,沸石之離子交換量(NH4+ion)和沸石中陽離子總數成正相關性;而物理性吸附(NH4+ads)和沸石中陽離子總數成負相關性。意味著陽離子數越多,沸石之離子交換性能越好,但其相對的物理吸附效能較差。從Si/Al比值發現離子交換作用的比例隨Si/Al增加而減少,而物理性吸附作用的比例則隨Si/Al比增加而增加。兩者作用呈現反向變化,尤其以低濃度20 mg/l變化最為明顯。50 mg/l仍以離子交換做用為主,100 mg/l之物理性吸附作用大為增加。
利用Langmuir Isotherm吸附等溫方程式去了解沸石單層飽和吸附量,得知Merlinoite及Mordenite-2具有最大之單層飽和吸附量,可達每克沸石吸附NH4+ 18.315 mg及17.212 mg,其他沸石之單層飽和吸附量則較小,在K值方面,Erionite之K值最高可能對於NH4+具有較強的吸附力。
The purpose of this study can be used in aquaculture, when NH3 concentrations in water higher than 0.05 ~ 0.2 mg/l can cause acute death of fish, so to reduce the use of zeolite NH4+ concentration in the water to a safe start of the scope of this study. Second, previous studies of selective adsorption in zeolite, the zeolite only to explore the reaction between the ion balance, is not its role in ion exchange and adsorption of the controlled factors to explore further. In this study, the starting aqueous solution of ammonium concentration of 20 mg/l, 50 mg/l and 100 mg/l, to 500 ml of ammonium ion in aqueous solution with 5 g of zeolite powder in addition to ammonium reaction. The zeolites we using in this experiment include Mordenite, Chabazite, Erionite and Clinoptilolite; the synthetic zeolites are Merlinoite and zeolite P. Using of ICP-AES and spectrophotometer measure degree of Na+, K+, Ca2+ and NH4+ concentration of the end to explain the behavior of mechanisms in addition to ammonium, and by EPMA instrument that the boiling the chemical composition of stone.
In addition to the mechanism of zeolite into ammonium ion exchange and physical adsorption, in the 20 mg/l based on ion exchange, with an increase in the concentration of ion exchange to lower the percentage, and the role of physical adsorption is a gradual increase in the percentage, the effect only affect the high and low concentrations of ammonium in addition to the role of zeolite.
This experiment in the 28 ~ 32℃ and pH 6 ~ 9 of the conditions, the concentration of all the zeolite can be reduced to 28 mg/l below, applicable to 25 ~ 30℃ (pH 7.0) of 37.670 ~ 26.306 mg/l conditions under. In 20 mg/l initial concentration in the reaction Chabazite, Erionite and zeolite P can be lower than the NH4+ 1.32 mg/l below the pH value can be applied to the environment as much as 8.3; the initial concentration of 50 mg/l, the Chabazite concentration may be reduced to only 4.812 mg/l, up to pH value of 7.8 environmental use, still does not apply to other zeolite pH value of 7.8 or above; 100 mg/l initial concentration of the reaction, all the zeolite can only be applied to pH value of 7.0 the following environment.
In addition to removing ammonium in the mechanism of zeolite, ion exchange capacity of zeolite (NH4+ion) and cation zeolite in the total number of positive correlation; and physical adsorption (NH4+ads) and zeolite cation of the total number of negative correlation . Cation means that a few more of the ion-exchange properties of zeolite, the better, but its relatively poor performance of physical adsorption. From the Si/Al ratio found in the proportion of ion exchange with the Si /Al increase and decrease in physical adsorption and the ratio with the Si/Al ratio increased. Both the role of a reverse change, particularly at low concentrations of 20 mg/l most obvious change. 50 mg/l is still done by ion exchange, 100 mg/l of physical adsorption greatly increased.
The use of Langmuir Isotherm adsorption isotherm equation to understand the volume of zeolite monolayer adsorption, that the Merlinoite and Mordenite-2 with the greatest saturation of the monolayer adsorption capacity, up to per gram of zeolite adsorbed NH4+ 18.315 mg and 17.212 mg, other zeolite saturated monolayer adsorption capacity of the small area in the K value, Erionite the highest possible value of K for NH4+ has strong absorption force.
目錄
摘要…………………………………………………………………….Ⅰ
Abstract………………………………………………………………....Ⅲ
目錄…………………………………………………………………….VI
表目………………………………………………………………….…IX

圖目………………………………………………………………...........X

第一章 緒論…………………………………………………….….….1
1.1 前言……………………………………………………..……1
1.2 沸石在水產養殖與水資處理上之應用…………….…….…3
1.3 研究目的………………………………………………..……6
第二章 實驗方法與步驟………………………………………..…….7
2.1 實驗材料………………………………………………..……7
2.2 實驗儀器………………………………….………….………9
2.3 實驗方法…………………………………………….………11
2.3.1 沸石處理及分析…………………….………….……13
2.3.2 掃描式電子顯微鏡分析……………………….…….14
2.3.3 X光粉末繞射分析……………….……….…..……..15
2.3.4 電子微探儀分析……………….…………………….16
2.3.5 離子交換與分析…………………………….….……17
第三章 實驗結果…………………………………………………….20
3.1 合成沸石……………………………………………………..20
3.1.1 Merlinolite 之合成條件與結果…………………….20
3.1.2 Zeolite P之合成條件與結果…………….………….21
3.2 XRD鑑定結果……………………………………………...22
3.3 SEM觀察結果…………………………………….………...25
3.4 沸石除銨之實驗結果…………………………….…………27
3.5 電子微探儀之化學成分結果………………….……………49
第四章 討論與結果………………………………….……………...51
4.1 沸石之除銨機制…………………………….…………….51
4.2 起始銨離子濃度對於除銨速率之影響.............55
4.3 水產養殖之應用..........................57
4.4 沸石成分對於除銨結果之影響..................62
4.5 吸附原理與等溫吸附方程式....................75
4.5.1 吸附原理.........................75
4.5.2 吸附等溫線(Adsorption isotherms)………….76
4.5.3 Langmuir Isotherm等溫吸附方程式.......77
第五章 結論………………………………………………….……….84
參考文獻……………………………………………………….……….86
參考文獻
Ames, L. L. (1967) Zeolite removal of ammonium ions from agricultural wastewaters. Proceedings of the 13th Pacific Northwest IndustrialWaste Conference, Washington, pp.135-152.
Ames, L. L. and JR. (1961) Cation sieve properties of the open zeolites Chabazite, Mordenite, Erionite and Clinoptilolite. The American mineralogist, 46:1120-1131
Belhekar A. A., Chandwadkar, A. J., Hegde, S.G.. (1995) Physicochemical characterization of a synthetic merlinoite (Linde W-like) zeolite containing Na, K and Sr cations. Zeolites, 15: 535-539.
Barrer, R.M. and Klinwski, J. (1974) Ion exchange in mordenite: Jour.chem.Soc., Faraday Trans(London), pp.2362-2367
Colt, J. E. and Armstrong, D.A. (1981) Nitrogen toxicity to crustaceans,fish and molluses: Proceeding of the Bio-Engineering Symposium for Fish Culture. American Fisheries Society, Bethesda.
Demir, A., Gunay, A. and Debik, E. (2002) Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite. Water SA, 28(3).
Du, Q., Liu, S., Cao, Z. and Wang, Y. (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separation and Purification Technology, 44: 229-234.
Dyer, A. and Zubair, M. (1998) Ion-exchange in Chabzite. Microporous and Mesoporous Materials, 22: 135-150.
Emma., C. and Nicholas, A. B. (1999) Ammonia removal from wastewaters using natural Australian zeolite. I. characterization of the zeolite. Separation and Purification Technology, 34(12): 2307-2327.
Englert, A. H. and Rubio, J. (2005) Characterization and environmental application of a Chilean natural zeolite. Intertional Journal of mineral processing ,75: 21-29.
Gupta, A., Gaur,V.and Verma, N. (2004) Breakthrough analysis for adsorption of Sulfur-Dioxide over Zeolite. Chemical Engineering and Processing, 43: pp.9-22.
Karadag, D., Yunus Koc., Mustafa Turan., Bulent Armagan., et al. (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials ,B136: 604–609.
Ruthven, D. M. (1984) Principles of adsorption and adsorption processes. John Wiley & Sons, Inc., NewYork.
Siriwardane, R. V., Shen, M.S. and Fisher. E.P. (2003) Adsorption of CO2, N2, and O2 on Natural Zeolites. Energy & Fuels, 17: 571-576.
Stenzel, M. H. (1993) Remove Organics by Activated Carbon Adsorption Chemical Engineering Progress, 89(No.7): pp.36-43.
Tangkawanit, S., Rangsriwatananon, K.and Dyer, A (2005) Ion exchange of Cu2+,Ni2+,Pb2+ and Zn2+ in analcime(ANA) synthesized from Thai perlite. Microporous and Mesoporous Materials, 79: 171-175.
TevroR, A. M. and Rou, R. (1964) Zeolite studies IV: Na-P Zeolites and the ion-exchanged derivatives of tetragonal Na-P. The America mineralogist, 49.
Thornton, A., Pearce, P.and Parsons, S.A. (2007) Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. Journal of Hazardous Materials, 147: 883-889.
Wang, Y., Kmiya, Y.and Okuhara ,T. (2007) Removal of low-concentration ammonia in water by ion-exchange using Na-mordenite." Water reseach, 41: 269-276.
Wang, Y.F., Lin, F., Pang,W.Q. (2007) Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. Journal of Hazardous Materials, 142: 160-164.
Wheaton, F.W., Hochheimer J.H., Kaiser and Krones M.J. (1991) Pricples of biological firation : Nraes. 49(pp.1-31).
Yamamoto, K., Borjas, G.S.E.and Muramatsu, A. (2007) Zeolite synthesis using mechanochemical reaction. Microporous and Mesoporous Materials, 101: 90-96.
Wang, Y., Lin, F. and Pang, W. (2008) Ion exchange of ammonium in natural and synthesized zeolites. Journal of Hazardous Materials.
王秀春,丁志斌,都的箭 (2001) 沸石的性能及在水處理中的應用,解放軍理工大學學報-自然科學報,第2卷,第4期,第74-77頁。
王金明,易發成 (2006) 沸石對核素Sr2+的吸附性能的實驗研究,中國礦物,第15卷,第2期,第81-84頁。
任剛,崔福義 (2006) 改性天然沸石去除水中氨氮的研究,環境汙染治理技術與設備,第7卷,第3期,第75-79頁。
朱燕,李曄 (2005) 改姓微孔沸石球來吸附柱去除氨氮的研究,淨水技術,第24卷,第6期,第14-17頁。
余政寶,宋乃忠 (2005) 沸石加工與應用,化學工業出版社,北京。
李獻欽,戴妏菁,謝祝欽 (2005) 運用Y型疏水性沸石去除甲苯及醋酸丁酯之吸附及脫附能力與其影響機制,國立雲林科技大學環境與安全衛生工程系學刊,第六期,第1-11頁。
李愛陽 (2004) 改性斜髮沸石對微汙染飲用水的處理研究,化工時刊,第18卷,第5期。第49-51頁。
林宏瑞 (1992) 沸石吸附有機溶劑甲苯之研究,碩士論文,國立台灣大學環境工程研究所,台北市,共108頁。
張秀英 (2006)沸石的改性處理及吸附性能研究,化工礦物與加工。 第12期。第11-13頁。
許菁珊 (2006) 沸石對於光電產業揮發性有機化合物之吸/脫附研究, 碩士論文,國立中山大學環境工程研究所,共152頁。
陳南春,胡存杰 (2006) 紅輝沸石吸附性能及其在肥料中應用,非金屬礦,第29卷,第2期。
陳惠芬 (2003) Na2O•Al2O3•nSiO2,CaO•Al2O3•nSiO2,xCaO•(1-x) •Na2O•Al2O3•nSiO2及xNa2O•(1-x)K2O•Al2O3•nSiO2系統中合成沸石之研究,博士論文,國立台灣大學,地質科學研究所,共139 頁。
蔡政鴻 ( 2007 ) 合成及天然沸石之銨離子吸附能力。國立臺灣海洋大學,應用地球科學研究所。共101頁。
黃宇宏 (2001) 養殖廢水氨氮去除速率之探討,碩士論文,國立台灣大學生物產業機電工程研究所,共68頁。
楊萬發 (1995) 水及廢水處理化學,台北,茂昌出版社,共554頁。
趙桂蓉 (2003) 微孔洞及中孔洞沸石類物質之研究,自然科學簡訊, 第十五卷,第二期,第36-38頁。
劉文質 (1994) 飲用水沸石除氨,水處理技術,第21 卷,第3 期,第166-170頁。
顏秀慧 (1997) 沸石對揮發性有機物吸附行為之研究, 博士論文,國立台灣大學環境工程研究所,台北市,共130頁。
譚鳳訓,武道吉,李秋梅,李滿 (2006) 沸石活化與再生實驗研究, 現代化工,第26卷,第140-142頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top