(3.236.122.9) 您好!臺灣時間:2021/05/09 05:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:江昀宸
研究生(外文):Yun-Chen Jiang
論文名稱:預熱對SP-700及Ti-6Al-6V-2Sn雷射銲件缺口拉伸特性研究
論文名稱(外文):The Effect of Preheating on Notch Fracture of SP-700 and Ti-6Al-6V-2Sn Laser Welds
指導教授:蔡履文
指導教授(外文):Leu-Wen Tsay
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:鈦合金缺口拉伸試驗衝擊試驗預熱銲件
外文關鍵詞:Ti-4.5Al-3V-2Fe-2MoTi-6Al-6V-2SnLaser weldingPreheated weldNotched tensile strength
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
銲前預熱及銲後熱處理,對α+β型鈦合金銲件缺口拉伸強度及衝擊值有很大的影響。將試件預熱至300℃以降低銲件冷卻速率,實驗結果與無預熱銲件比較,整體上預熱銲件相有較粗大的α+β組織,在經過不同溫度銲後熱處理,預熱銲件也有較低的時效硬化現象,在相同銲後熱處理條件下,預熱銲件有較低硬度值及延性增加之現象,其結果改善了銲件的缺口脆性及衝擊韌性。SP-700銲件經482℃時效後有最大缺口脆性,而Ti-6Al-6V-2Sn銲件則在經593℃時效後有最大缺口脆性。無預熱原始銲件破斷面呈現樹枝狀破裂特徵,隨著預熱及時效溫度上升,樹枝狀破裂隨之消失。預熱試件整體上破斷面有較具延性之特徵,如窩穴破裂較深較大、沿晶破裂減少,晶界剪變程度上升等現象,銲後熱處理溫度升高使的銲件晶界α粗大化,而有晶界滑移及沿晶窩穴破裂產生。
Notched tensile strength (NTS) and impact toughness of Ti-4.5Al-3V-2Fe-2Mo and Ti-6Al-6V-2Sn laser welds, which were subjected to various post-weld heat treatments (PWHTs) with or without preheating, were determined in this work. Ti-4.5Al-3V-2Fe-2Mo weld with the PWHT at 482℃ had lowest NTS among the welds. However, the lowest NTS was found for the Ti-6Al-6V-2Sn weld with the PWHT at 593℃. Preheated at 300oC could effectively reduce the cooling rate of the welds, and enhanced the formation of coarse α + β structures as compared with the non-preheated welds. Meanwhile, the preheated welds showed slower responses to age-hardening during PWHTs than the non-preheated. The decrease in hardness and increase in ductility resulted in the lowered notch brittleness and improved impact toughness of the preheated welds, relative to the non-preheated welds at the same PWHT. For the non-preheated weld in the as-welded conditions, the fracture surface showed little extent of interdendritic separation. Note that interdendritic separation disappeared for the welds with the PWHT or preheating before welding. Preheating of the weld tended to assist ductile fractures with large and deep dimples, reduced extent of intergranular fracture as well as increase in grain boundary shear. Increasing PWHT temperature, the coarsening of grain boundary α was associated withd grain boundary sliding on the fracture surface.
總 目 錄
第一章 前言 1
第二章 文獻回顧 2
2-1.1 鈦之特性與應用 2
2-1.2 鈦之相分類 2
2-1.3 溶質原子對鈦合金的影響 3
2-1.4 鈦合金的分類 4
2-1.5 SP700性質介紹 5
2-1.6 Ti-6Al-6V-2Sn性質介紹 5
2-1.7 鈦及鈦合金銲結特性 6
2-2 雷射原理 7
2-2.1 雷射銲接 7
2-3 預熱(Preheating) 9
2-4 缺口拉伸試驗 10
第三章 實驗設備及方法 17
3-1 實驗材料 17
3-2 雷射銲接 17
3-3 時效熱處理 18
3-4.1 SEM與OM的觀察 18
3-4.2 TEM的觀察 19
3-5 缺口拉伸試驗 19
3-6 衝擊試驗 20
第四章 結果與討論 30
4-1 SP700金相及顯微組織觀察 30
4-2 SP700硬度試驗及缺口拉伸試驗 36
4-2.1 SP700硬度試驗 36
4-2.2 SP700缺口拉伸試驗 36
4-3 SP700衝擊試驗 45
4-4 Ti-662硬度試驗及缺口拉伸試驗 53
4-4.1 Ti-662硬度試驗 53
4-4.2 Ti-662缺口拉伸試驗 53
4-5 Ti-662衝擊試驗 62
第五章 結論 69
第六章 參考文獻 71

表 目 錄

表2-1 鈦合金主要應用[6] 11
表2-2 SP700之化學成份[9] 12
表2-3 SP700之基本物理性質[13] 12
表3-1 本實驗所選用之試片及其熱處理條件 21

圖 目 錄

圖2.1 α相HCP及β相BCC結晶結構[7] 13
圖2.2 β/α相變與Burger vector 關係[7] 13
圖2.3 β/α相變之Burger vector 關係[9] 14
圖2.4 溶質原子與鈦合金相圖之關係[7] 14
圖2.5 Ti-Al相圖[7] 15
圖2.6 雷射Keyhole銲接示意圖[33] 15
圖2.7 Keyhole內雷射多重反射現象 [34] 16
圖2.8 電漿雲幕生成過程示意圖 [38] 16
圖3.1 雷射銲接系統 22
圖3.2 銲接夾具示意圖 23
圖3.3 雷射銲接保護氣罩(Shielding Device)示意圖 23
圖3.4 高真空系統配置圖 24
圖3.5 HITACHI-4800場發射掃描式電子顯微鏡 25
圖3.6 JEOL 2010穿透式電子顯微鏡 25
圖3.7 微電腦萬能拉伸試驗機 26
圖3.8 缺口拉伸試片之取裁位置與詳細尺寸 27
圖3.9 Charpy衝擊試驗機 28
圖3.10 衝擊試片之取裁位置與詳細尺寸 29
圖4.1 SP700銲件巨觀 32
圖4.2 SP700銲件經不同時效溫度處理之顯微組織 33
圖4.3 SP700銲件經不同時效溫度處理之TEM照片 35
圖4.4 SP700銲件經不同時效溫度下硬度變化曲圖 39
圖4.5 SP700銲件經不同時效溫度下缺口拉伸強度變化曲圖 40
圖4.6 SP700銲件缺口拉伸破斷面巨觀 41
圖4.7 SP700預熱銲件缺口拉伸破斷面微觀 43
圖4.8 SP700銲件經不同時效溫度下衝擊值變化曲圖 48
圖4.9 SP700衝擊試驗破斷面巨觀 49
圖4.10 SP700衝擊試驗破斷面微觀 51
圖4.11 Ti-662銲件經不同時效溫度下硬度變化曲圖 56
圖4.12 Ti-662銲件經不同時效溫度下缺口拉伸強度變化曲圖 57
圖4.13 Ti-662銲件缺口拉伸破斷面巨觀 58
圖4.14 Ti-662預熱銲件缺口拉伸破斷面微觀 60
圖4.15 Ti-662銲件經不同時效溫度下衝擊值變化曲圖 64
圖4.16 Ti-662衝擊試驗破斷面巨觀 65
圖4.17 Ti-662衝擊試驗破斷面微觀 67
1. Titanium’80 Science and Technology, H. Kimura O.Izumi, eds., Proc. 4th International Conference on Titanium, Kyoto, Japan, May 19-22, 1980, p.2205
2. Titanium’92 Science and Technology, F. H. Froes and I. L. Caplan, eds., Proc. 7th World Titanium Conference, San Diego, USA, June 29-July 2, 1992 , p.793
3. B Gong, C. B. Zhang and Z. H. Lai, J. Mater. Sci. Lett., Vol. 13, 1994, p.1561
4. Titanium’2003 Science and Technology, M. Niinomi and J. C. Williams, eds., Proc. 10th World Titanium Conference, Hamburg, Germany, July 13-18,2003, p.95
5. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚編著,「工程材料學」,全華科技圖書股份有限公司, 1995, pp.518-525
6. 劉加德, “循環熱氫製程對Ti-6Al-4V合金晶粒細化之研究”, 國立台灣海洋大學/材料工程研究所, 民國97年, p.5
7. C. Leyens and M. Peters, “Titanium and Titanium alloys fundamental and applications”, WILEY-VCH GmbH & Co. KGaA, 2003, pp.5-10
8. F.D. Rosi, C.A. Dube and B.H. Alexander : Trans. AIME, vol. 197, 1953 ,p.257
9. L. Zeng , T. R. Bieler , “ Effect of working , heat treatment , and aging on microstructural evolution and crystallographic texture of α、α’、α” and β phases in Ti-6Al-4V wire “ , Materials Science and engineering, A 392, 2005, pp.403-404
10. Smith , “Structure and Properties of Engineering Alloys “ ,1993 , Mc Graw –Hill, p.433
11. M.J. Donachie, JR, Titanium and Titanium Alloy, Source Book, pp.10~14
12. R.A. Wood, Titanium Alloys Handbook, Metals and Ceramics Information Center, Battle, Publication NO.MCIC-HB-02, Dec., 1972.
13. R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, 1994
14. M. Ishikawa, O. Kuboyama, M. Niikura and C. Ouchi, “Microstucture and Mechanical Properties Relation of β-rich α-β Titanium Alloy; SP-700”, Titanium ’92 Science and Technology, edited by F.H. Froes and I. Caplan, Vol.2, 1993, pp.141-148
15. Atsushi Ogawa, Masakazu Niikura, Chiaki Ouchi, Kuninori Minikawa, and Makato Yamada, “Development and Application of Titanium Alloy SP-700 with High Formability”, Journal of Testing and Evaluation, Vol.24, No.2, 1996, pp.100-109
16. “Advantages of High-Formability SP-700 Titanium Alloy and Its Applications”, JFE Technical Report, No.5, Mar. 2005, pp.74-76
17. P.E. Denney and E.A. Metzbower, “laser Beam Welding of Titanium”, Welding Journal, Vol.68, No.8, 1989, pp.342-346
18. G. Thomas, V. Ramachandra, M.J. Nair, K.V. Nagarajan and R. Vasudevan, “Effect of Preweld and Postweld Heat Treatment on the Properties of GAT Welds in Ti-6Al-4V Sheet”, Welding Journal, Vol.71, No.1, 1992, pp.15s-20s
19. K. Borggreen and I. Wilson, “Use of Postweld Heat Treatments to Improve Ductility in Thin Sheet of Ti-6Al-4V Alloy”, Welding Journal,vol.59,No.1,1980,pp.1-9
20. W.A. Baeslack and C.M. Bannas, “A Comparapire Evaluation of Laser Gas Tungsten Ard Weldment in High-Temperature Titanium alloys”, Vol.60, No.8, 1981, pp.121s-130s
21. G.Thomas, M.J. Nair, K.V. Nagarajan and R. Vasudevan, “Effect of Pre- and Post-weld heat treatments on the mechanical properties of electron beam welded Ti-6Al-4V alloy”, Journal of Materials Science, Vol.28, 1993, pp.4892-4899
22. T.C. Peng, S.M.L. Sastry and J.E. O’Neal and J.F. Tesson, ”Microstructures and Mechanical of Laser Welded Titanium Alloys”, Advances Processing Methods For Titanium, Oct, 1981, pp.203-215
23. Y. Arata, T. ODA, R. Nishio, “Effect of Assist Gas on Bead Formartion in High Power Laser Welding”, Transactions of Japan Welding Research Institute, Vol.12, No.2, 1983, P.1.
24. R. R. Boyer, “An overview on the use of titanium in aerospace industry”, Materials Science and Engeneering A213, 1996, p.103-114
25. 張國順,鄭壽昌 “現代雷射製造技術”, 新文京開發, 2007, pp.2-17
26. William M. Steen, “Laser Material Processing 2nd ed.”, Springer, 1998
27. C. O. Brown, Applied Phys. Letters, Vol. 17,1970, p.338
28. C.O. Brown, J.W. Davis, Proc. of the I. E. E. E. ,New York, NY, October 1970, p.58
29. C. K. N. Patel, Physics Review, Vol. 136,1964, p.A1187
30. A. J. Hick, “Industrial Lasers and Their Applications ”, PRENTICE-HALL Inc.,1985
31. J. F. Lancaster, “The Physics of Welding”, Pergamon Press,p.268-293
32. C. O. Brown, C. M. Banas, “Deep-Penetration Laser Welding”, AWS Annual Mtg.,San Francisco,Appril 1971
33. Sindo Kou, “WELDING METALLURGY 2nd ed.”, John Wiley &Sons, Inc., 2003
34. C.E. Albright, “Pulsed CO2 Laser Welding” Proceeding of the ASM, Trends in Welding Research, New Orleans, Louisiana, 1981, pp.653-665.
35. C. Banas, “High Power Laser Welding”, Industrial Laser Annual Handbook, Pennwell pub., 1986,p.69-86
36. G. Herziger, “The Influence of Laser-Induced Plasma on Laser Material Processing”, Industrial Laser Annual Handbook, PennWell pub., 1986, pp.108-115.
37. R.D. Dixon ,G.K. Lewis, Welding Journal, Vol 64, no3, 1985, pp.71-78
38. Y. Arata, N. ABE, T. ODA, “Beam Hole Behavior During Laser Beam Welding”, ICALEO’83, pp.59-66.
39. R.S. Arnot, “Plasma Plume Effect in Pulsed Carbon Dixoide Laser Spot Welding”, ICALEO’83, P.51
40. Y. Arata, T. ODA, R. Nishio, “Effect of Assist Gas on Bead Formartion in High Power Laser Welding”, Transactions of Japan Welding Research Institute, Vol.12, No.2, 1983, P.1.
41. Y. Arata, “Laser Advanced Materials Processing”, Transactions of Japan Welding Research Institute, Vol. 16, No. 2, 1987,p.181-190
42. W. B. Estill, “Porosity Decrease in Laser Welds of Stainless Steel Using Plasama Control”, ICALEO’83,pp.67-72
43. 陳琰琮,“銲接接合型式對鋼鐵銲件氫脆敏感性的影響”, 國立台灣大學材料科學與工程學研究所, 民國87年6月, pp.16-17
44. P. R. Vishnu, Lulea University of Technology, Sweden, ASM Hand Book, Vol.6, p.70
45. 張祖霖, “D6ac在氫氣中之缺口拉伸強度與疲勞裂縫成長特性探討”, 國立台灣大學材料科學與工程學研究所, 民國86年6月, pp.42-53
46. L.W. Tsay, Y. S. Ding, W. C. Chung and C. Chen: Mats Letter, 62 , 2008, pp.1114-1117
47. W. C. Chung, L.W. Tsay, Y. S. Ding and C. Chen: Mat. Trans, 49, 2008, pp.2190-2195
48. W. D. Brewer, R. K. Bird, and T. A. Wallace, Mater. Sci. Eng. A 243, 1998, pp.299-304.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔