(3.238.96.184) 您好!臺灣時間:2021/05/08 21:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡瑞興
研究生(外文):Juei-Hsing Tsai
論文名稱:深開挖工程量化分析之研究
論文名稱(外文):Quantification analysis for deep excavation
指導教授:陳俶季陳俶季引用關係
指導教授(外文):Shuh-Gi Chern
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:219
中文關鍵詞:深開挖多準則決策理論類神經網路倒傳遞類神經網路內支撐系統統計製程管制少量生產管制圖
外文關鍵詞:deep excavationTOPSIS methodneural network (NN)back-propagation NN modelinternal bracing systemstatistical process controlEWMA Control Chart
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來台北都會區迅速發展,建築物朝向高層化及深層化的結果,使得施工愈形艱難,工程費用也愈加鉅額。透過執行深開挖專案工程的過程,有效地蒐集相關數據如工程經費、監測數據等,有助於量化分析深開挖工程之效益及監測管理值。本研究蒐集台北地區深開挖工程34個專案之執行預算、15個逆打深開挖專案之安全監測數據,透過統計理論、多準則決策理論、類神經網路理論及統計製程理論來量化分析,藉此建立台北地區深開挖工程之成本模式、逆打深開挖監測管理值及深開挖內支撐工法施工製程的改善方法。
台灣的營造商因資本額較低且面臨原料高漲及低獲利狀況下,如何有效地控制施工成本是增加競爭力之重要關鍵。本研究分析蒐集的案例後,發現管理費、結構工程費及裝修工程費為影響專案成本之主要因素;經由迴歸分析建立上述因數與專案總預算及總樓地版面積之成本模型,模型可以快速提供估價之?考及分析預算的合理性。應用TOPSIS評估案例的績效,發現績效較佳之專案的管理費約占總預算的10%以內。
本研究蒐集台北地區逆打深開挖案例觀測數據,以統計理論和國內外文獻及相關法規歸納出深開挖的安全監測管理值,並將9個逆打擋土壁體之資料透過類神經網路理論來作為壁體變位預測之研究。在深開挖的挖掘過程中,量測地下連續壁之壁體變位為監測擋土壁體之重要數據,觀測值的管理得以避免支撐系統的破壞。應用倒傳類神經網路理論來預測壁體最大變位,因該網路本身具有學習的能力,且無須完全了解其因果關係;透過此學習模型得以將深開挖(4~8階段)的壁體變位的觀測值被用於訓練蒐集以及證實。根據研究的結果,顯示類神經網路能合理預測連續壁壁體的最大壁體變位及其位置。類神經考量權重中總分析得知影響壁體變形因子(相對重要性%)最重要的是開挖深度(相對重要性占14.79%)。
深層化的開挖工法以內支撐系統為開挖工程中最常採用方式,因其支撐材料(H型鋼)可重複使用,較為經濟。內支撐系統之目的在於主要抵擋土結構之變形量,而整個系統以中間柱及水平支撐為主要構件。本研究以中間柱施工及水平支撐承受壓力做為施工製程管制之對象,並應用統計製程管制分析其製程能力,可有效去除失控原因,因而提升製程能力及施工安全。
This paper explores Taiwan’s construction industry in terms of its property environment as well as its profit making capabilities. Taiwan’s construction industries are generally low in capital and they face problems like expensive raw materials and low profit margins. Under such circumstances and increased competition within the construction industry, coupled with a decline in the number of such employees, there is a need to build a costing model for deep excavation projects. Thirty-four case studies from Taipei urban area’s deep excavation projects were analyzed, statistical and performance analyses were done on each case study’s execution budget. Based on the results of these two analyses, it was found that total budget and total floor area have very high correlations with budgets of management, structural construction, and finish work. The relationship between total budget and budgets of management, structural construction, and finish work and the relationship between total floor area and budgets of management, structural construction, and finish work are developed through regression analyses. Based on these regression models, the total budget and total floor area can be estimated easily once the budgets of management, structural construction, and finish work are known.
Deep excavation is widely undertaken in the construction of high-rise building foundations in urban areas. Measurement of diaphragm wall deflection is so important in deep excavation that monitoring data are always adopted to evaluate construction performance so as to avoid failures of the supporting system. This paper attempts to predict the diaphragm wall deflection in deep excavations by using a back-propagation artificial neural network (NN) learning model. Case histories of deep excavations (with 4 to 8 excavation stages) from the construction projects in Taipei Basin are collected for training and verification. From the results of this research, it is shown that the artificial NN can reasonably predict both magnitude and location of the maximum deflection of the braced wall in deep excavations.
The internal bracing system is more often in excavating the much more deep foundation, which is popular and economic because its materials can be used repeatedly. The main function of the internal bracing system is to keep out the deflection of the earth structure. The main components of the system are horizontal strut and center post. The statistical process control and safety monitoring system in this study are used effectively to analyze the process capability of the axially pressure of the horizontal strut and installation of center post during the construction. It shows that tools of the statistical process control (SPC) can maintain improving quality of internal bracing system very well.
誌謝 Ⅰ
摘要 Ⅲ
目錄 VII
表目錄 X
圖目錄 XII

第一章 緒論 1

1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容 2
1.4 研究方法與流程 3
1.5 論文內容 5

第二章 文獻回顧 8

2.1 台北盆地地質狀況 8
2.2 深開挖工程行為及施工 10
2.3 預測壁體變形之研究方法 17
2.4 類神經網路的應用 20
2.5 TOPSIS多評準決策法之應用 24
2.6 統計製程理論的應用 26
2.7 營造業成本分析 27

第三章 深開挖土建工程成本分析 31

3.1 成本分析 31
3.2 資料分析 34
3.3 關聯性分析 39
3.4 離散分析檢討 40
3.5 成本模型建立 41

第四章 深開挖土建工程績效分析 68

4.1 績效分析方法 68
4.2 績效分析 71
4.3 模型與績效之關聯探討 76

第五章 深開挖工程安全監測管理 81

5.1 安全監測系統建立之目的 82
5.2 安全監測系統之設置 86
5.3 安全監測管理值模式 87
5.4 逆打深開挖觀測值模式 92

第六章 應用類神經網路分析及預測最大壁體水平變位 104

6.1 類神經網路理論 104
6.2 基本資料分析 113
6.3 網路建構 114
6.4 變位預測分析 116
6.5 網路預測結果之分析 118
6.6 網路預測案例驗證 119
6.7 權重分析 120

第七章 深開挖內支撐之控管 143

7.1 擋土支撐架構 143
7.2 統計製程管制理論 145
7.3 案例研究 149
7.4 製程管制成效 158


第八章 結論與建議 186

8.1 結論 186
8.2 建議 188

參考文獻 190
作者簡歷 201
王建智、林宏達、吳明峰(1999),「粘土層深開挖引致之地表沉陷」,地工技術,第76期,第51~62頁。
王執明、鄭穎敏、王源(1978),「台北盆地之地質及沉積物之研究」,台灣礦業,第30卷,第4期,第350~380頁。
王進德、蕭大全(2005),「類神經網路與模糊控制理論入門」,全華科技圖書。
王繼勝(1995)「深開挖工程與建築物保護分析設計實務」,現代營建雜誌社。
內政部(2003),「建築技術規則」,內政部營建署。
內政部營建署(1995),「土方工程與擋土設施規範」,內政部營建署。
朱耀光(1997),「深開挖安全觀測系統安全管理值之擬定」,現代營建,第206~207期。
何泰源、李魁士(1990),「深開挖引起之地表沉陷及建物保護」,現代營建,第128~129期。
林宏達(2000),「深開挖工程設計與施工實務」,科技圖書。
林耀煌(1982),「高層建築基礎開挖施工法與設計實例」,長松出版社。
倪志寬(2000),「建築基地施工災害案例研討」,台北市89年度建築法令說明會,臺北市工務局。
徐振煌(1998),「深開挖工程設計」,台灣省土木技師公會。
陳正興(1998),「建築技術規則建築構造編基礎構造設計規範」,內政部建築研究所。
張吉佐、陳坤泉(1999),「設計參數對深開挖擋土支撐之敏感度評估」,地工技術,第76期,第17~24頁,地工技術研究發展基金會。
張瑞當、曾玉琦、李彥鋒(1999),「營造工程預算管理與控制之研究」,管理會計,第48期。
森重龍馬(1975),「地下連續壁之設計計算」,土木技術,第30卷第8號,第79~90頁,日本。
葉怡成(1993),「類神經網路模式應用與實作」,儒林圖書。
菊地佑悅等(2000),「大規模地下工事最近之計測管理」,基礎工,第28卷,第8期,第12~15頁。
楊素芬(2002),「品質管理」,華泰文化。
詹君治、冀樹勇、陳錦清(2000),「類神經網路於深開挖壁體變形之預測」,中興工程,第69期,第21~38頁。
廖瑞堂、歐章煜(1997),「台北國家企業中心深開挖工程行為之研究」,國立台灣科技大學營建工程技術系。
歐章煜(2002),「深開挖工程分析設計理論與實務」,科技圖書。
臺北市政府工務局(1989),「臺北市建築工程基礎開挖安全措施管理作業要點」,臺北市政府工務局。
顏東利(1991),「建築物允許沉陷量之探討 」,地工技術,第34期。
賴添盛(1997),「順打、雙順打與逆打工法施工說明會講義」,理成營造。
蔡瑞興、陳俶季(2003),「台北都會區逆作深開挖安全監測系統施工規劃暨管理模式研究」,四川大學學報(工程科學版),第35 卷第6 期,第20~25頁(EI)。
蔡瑞興(2001),「臺北都會區逆打深開挖施工行為暨規劃模式之研究」,臺灣海洋大學河海工程學系。
龔東慶(2001) ,「深開挖工法影響連續壁變形行為之研究」,第九屆大地工程學術研討會論文集,A003-1~A003-7。
羅華強(2001),「類神經網路-MATLAB的應用」,清蔚科技。
Bretschet., Otto(2001), “Linear algebra with applications,” Prentice Hall.
Casella, George and Berger, Roger L (2002), “Statistical inference,” Thomson.
Chen CT(2000), ”Extensions of the TOPSIS for group decision-making under fuzzy environment,” Fuzzy sets and systems, No. 114.
Chen, YM (2003), “Statistical analysis handbook,” Chwa Co.
Chern, SG, Hu, RF, Chang, YJ, and Tsai, IF(2002), “Fuzzy-Art neural networks for predicting Chi-Chi earthquake induced liquefaction in Yuan-Lin area,” J Marine Scien and techn, Vol. 10, No. 1, pp. 21-32.
Chern, SG, Tsai, JH, Chien, LK, and Huang, CY (2009), “Predicting Lateral Wall Deflection in Top-Down Excavation by Neural Network,” International Journal of Offshore and Polar Engineering (IJOPE), Vol. 19, No. 2, pp. 151-157 (SCI).
Chi, SY, Chern, JC, and Wang, CC(1999),“Information construction approach for deep excavation,” Proc Int Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Balkema, Rotterdam, The Netherlands, pp. 471-476.
Chow, WS (1999), “Statistics,” Best-Wise Co.
Clough, GW, and Hansen, LA(1981), “Clay anisotropy and braced wall behavior.” J Geotech Eng, Vol. 107, No. 7, pp. 893-913.
Clough,GW, and O`Rourke, TD(1990), “Construction-induced Movements of Insitu Walls,” Proceedings,design and performance of earth Retaining Structures, ASCE Special Conference, Ithaca, New York, pp. 439-470, ASCE.
Cooper, DR, and Pamela, SS (2003), “ Business Research Methods,” McGraw-Hill, New York.
Garson, GD (1991). “Interpreting Neural-network Connection Weights,” AI Expert, Vol. 6, No. 4, pp. 46-51.
Gevrey, M, Dimopoulosb, I, and Leka, S (2003), “Review and Comparison of Methods to Study the Contribution of Variables in Artificial Neural Network Models,” Ecological Modelling, Vol. 160, No. 3, pp. 249-264.
Gioda, G, and Sakurai, S(1987), “Back-analysis procedure for the interpretation of field measurements in geomechanics,” Int J Numer Analyt Meth Geomech, No. 11, pp. 555-583.
Goh, ATC(1994),“Seismic liquefaction potential assessed by neural networks,” J Geotech Eng, Vol. 120, No. 9, pp. 1467-1480.
Haliburton T (1979), “Soil Structure Interaction,” T.P. 14, Okla. State University, Stillwater OK, pp. 181.
Hawng CL, Yoon K(1981), “Multiple Attribute Decision Making-Methods and Applications,” Springer, Berlin-Heidelberg.
Hashash, YMA, and Whittle, AJ(1996), “Ground movement prediction for deep excavations in soft clay,” J Geotech Eng, Vol. 122, No. 6, pp. 474-486.
Haykin, S (1999), “Neural networks- a comprehensive foundation,” Prentice Hall, New York.
Hung, SL, and Lin, YL(1994), “Application of an L-BFGS neural network learning algorithm in engineering analysis and design, ” Proc 2nd National Conf on Structural Engineering, Taiwan(in Chinese).
Hwang, RN, and Moh, IC (2007), “Deflection paths and reference envelops for diaphragm walls in the Taipei basin,” J GeoEng, Vol. 2, No. 1, pp. 1-12.
Jan, JC, Hung, SL, Chi, SY, and Chern, JC(2002), “Neural network forecast model in deep excavation,” J Comp in Civil Eng, Vol. 16, No. 1, pp. 59-65.
Juang, CH, Ni, SH, and Lu, PC(1999), “Training artificial neural networks with the aid of fuzzy sets, ” Microcomput Civil Eng, Vol. 14, No. 6, pp. 407-415.
Kung, TC(2003), “Analysis of surface settlement induced by excavation with consideration of small-strain behavior of Taipei silty clay,” PhD Dissertation, National Taiwan University of Technology. Taiwan.
Mana, AI, and Clough, GW(1981), “Prediction of Movement for Braced Cut in Clay,” Journal of Geotechnical Engineering Division, Vol.107, No.6,pp.759-777, ASCE.
Minitab Inc.(2004), “Meet Minitab 14,” Minitab Inc.
Miyoshi, M (1977), “Mechanical Behavior of Temporary Braced Wall,” Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, No. 2/60, pp. 655-658.
Montgomery, DC (2001), “Design and analysis of experiments,” Wiley.
Montgomery, DC (2001), “Introduction to statistical quality control,” Wiley.
Montgomery, DC, Peck, EA, and Vining, GG (2001), “Introduction to Linear Regression Analysis,” 3rd Edition,New York, New York: John Wiley & Sons.
Nicholson DP(1987), “The design and performance of the retaining wall at Newton station,” Proceeding of Singapore mass Rapid transit conference, Singapore: pp. 1475-154.
Ni, SH, Lu, PC, and Juang, CH(1996), “A fuzzy neural network approach to evalution of slope failure potential,” Microcomput Civil Eng, Vol. 11, No. 2, pp. 59-66.
Olden, JD and Jackson, DA (2002), “Illuminating the “Black Box”: a Randomization Approach for Understanding Variable Contributions in Artificial Neural Networks,” Ecological Modelling, Vol. 154, No. 1-2, pp.135-150.
Ou, CY, Hisieh, PG, and Chiou, DC(1993), “Characteristics of Ground Surface Settlement during Excavation,” Canadian Geotechnical Journal, Vol. 30, No. 5, pp.758-767.
Ou, CY, Liao, JT, and Cheng, WL(2000), “Building response and ground movements induced by a deep excavation,” Geotechniques, Vol. 50, No. 3, pp. 209-220.
Ou, CY, Liao, JT, and Lin, HD(1998), “Performance of diaphragm wall constructed using Top-down method,” J Geot and Geoenvir Eng, Vol. 124, No. 9, pp. 798-808.
Ou, CY, and Tang, YG(1994), “Soil parameter determination for deep excavation analysis by nonlinear optimization,” J Chinese Inst of Engs, Vol. 17, No. 5, pp. 671-688.
Peck, RB(1969), “Deep Excavation and Tunneling in Soft Ground,” Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City: pp.225~290.
Powrie, W, and Li, ESF (1991), “Finite element analysis of an in situ wall proposed at formation level,” Geotechnique, Vol. 41, No. 4, pp. 499–514.
Shyong, GS(2006), “Statistics and analyzing of Data for Minitab 14,” Song-Gang computer Bookstore.
Tsai, JH, Chern, SH, and Lin, SS (2009), “Cost and performance analyses for deep excavation in Taipei City,” Kuwait Journal of Science & Engineering, Vol. 36, No. 1, , (SCI). (已接受)
Wang, HR(2003), “Microsoft Excel for Statistics,” Acore Tech.
Whittle, AJ, Hashash, YMA, and Whitman, RV(1993), “Analysis of deep excavation in Boston,” J Geotech Eng, Vol. 119, No. 1, pp. 69-90.
Winkler, E (1867), “Die Lehre Von Elasticitaet Und Festigkeit,” Pray (H. Dominicus), pp.182-184.
Woo, SM, and Moh, ZC (1990), “Geotechnical characteristics of soils in the Taipei basin,” 10th Southeast Asian Geotechnical Conference, Taipei.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王建智、林宏達、吳明峰(1999),「粘土層深開挖引致之地表沉陷」,地工技術,第76期,第51~62頁。
2. 王建智、林宏達、吳明峰(1999),「粘土層深開挖引致之地表沉陷」,地工技術,第76期,第51~62頁。
3. 朱耀光(1997),「深開挖安全觀測系統安全管理值之擬定」,現代營建,第206~207期。
4. 朱耀光(1997),「深開挖安全觀測系統安全管理值之擬定」,現代營建,第206~207期。
5. 何泰源、李魁士(1990),「深開挖引起之地表沉陷及建物保護」,現代營建,第128~129期。
6. 何泰源、李魁士(1990),「深開挖引起之地表沉陷及建物保護」,現代營建,第128~129期。
7. 張吉佐、陳坤泉(1999),「設計參數對深開挖擋土支撐之敏感度評估」,地工技術,第76期,第17~24頁,地工技術研究發展基金會。
8. 張吉佐、陳坤泉(1999),「設計參數對深開挖擋土支撐之敏感度評估」,地工技術,第76期,第17~24頁,地工技術研究發展基金會。
9. 張瑞當、曾玉琦、李彥鋒(1999),「營造工程預算管理與控制之研究」,管理會計,第48期。
10. 張瑞當、曾玉琦、李彥鋒(1999),「營造工程預算管理與控制之研究」,管理會計,第48期。
11. 詹君治、冀樹勇、陳錦清(2000),「類神經網路於深開挖壁體變形之預測」,中興工程,第69期,第21~38頁。
12. 詹君治、冀樹勇、陳錦清(2000),「類神經網路於深開挖壁體變形之預測」,中興工程,第69期,第21~38頁。
 
系統版面圖檔 系統版面圖檔