(3.238.96.184) 您好!臺灣時間:2021/05/15 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:梁敏婷
研究生(外文):Man-Teng Leong
論文名稱:Thermoanaerobacteriumsp.NTOU2氫氣生產相關酵素之基因選殖及葡萄糖6-磷酸脫氫?與6-磷酸葡萄糖醛酸脫氫?的特性探討
論文名稱(外文):Gene cloning of hydrogen-producing related enzymes and characterization of glucose-6-phosphate dehydrogenase and 6-phosphogluconic dehydrogenase from Thermoanaerobacterium sp. NTOU2
指導教授:方翠筠
指導教授(外文):Tsuei-Yun Fang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:Thermoanaerobacterium sp. NTOU2氫氣生產相關酵素葡萄糖 6-磷酸脫氫?6-磷酸葡萄糖醛酸脫氫?肝醣磷酸水解?磷酸葡萄糖變位?
外文關鍵詞:Thermoanaerobacterium sp. NTOU2hydrogen-producing related enzymesglucose-6-phosphate dehydrogenase6-phosphogluconic dehydrogenaseglycogen phosphorylasephosphoglucomutase
相關次數:
  • 被引用被引用:10
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
肝醣磷酸水解? (glycogen phosphorylase, GP)、磷酸葡萄糖變位? (phosphoglucomutase, PGM)、葡萄糖 6-磷酸脫氫? (glucose-6-phosphate dehydrogenase, G6PD) 及 6-磷酸葡萄糖醛酸脫氫? (6-phosphogluconic dehydrogenase, 6PGD) 為氫氣生產相關酵素,可與合成的酵素路徑 (synthetic enzymatic pathway) 中其餘的 9 種酵素組合以澱粉與水做為原料生產氫氣。
利用 Restriction-Free (RF) cloning 技術,選殖 Thermoanaerobacterium sp. NTOU2 之 GP、PGM、G6PD 及 6PGD 基因構築於表現載體 pET-21b 上,並於宿主 Escherichia coli BL21(DE3)-CodonPlus-RIL 表現酵素。
以鎳親和性管柱純化的重組型 G6PD 及 6PGD 之比活性分別為 166.21 及 63.12 U/mg,活性回收率分別為 52.11% 及 61.93%,純化倍率分別為 4.58 及 1.75 倍,分子量分別約為 58 及 54 kDa。重組型 G6PD 及 6PGD 之最適作用溫度均為 75℃,最適作用 pH 分別為 8.0 及 7.5,於 40~60℃ 與 pH 4.5~9.5 之間具有良好的穩定性,5 mM 鈷與鋅離子則會完全抑制重組型 G6PD 酵素活性,5 mM 鈣離子會稍微促進重組型 6PGD 酵素活性,5 mM 銅與鋅離子則會完全抑制重組型 6PGD 酵素活性。
重組型 G6PD 之 NADP+ 及 glucose-6-phosphate 的 kcat 分別為 3.286 與 2.228 s-1,KM 分別為 0.024 與 0.029 mM,kcat/KM 為135.73 與 77.66 s-1.mM-1。重組型 6PGD 之 NADP+ 及 6-phosphogluconate 的 kcat 分別為 0.978 與 0.755 s-1,KM 分別為 0.045 與 0.016 mM,kcat/KM 為21.77 與 47.46 s-1.mM-1。
本實驗各目標酵素之表現系統、純化與特性的建立,可作為未來以澱粉與水做為原料生產氫氣之參考依據。
Glycogen phosphorylase (GP), phosphoglucomutase (PGM), glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconic dehydrogenase (6PGD) are hydrogen-producing related enzymes. They could be combined with other 9 hydrogen-producing related enzymes to form a synthetic enzymatic pathway for producing hydrogen from starch and water. Restriction-Free (RF) cloning was used to clone target genes. The GP, PGM, G6PD and 6PGD genes from Thermoanaerobacterium sp. NTOU2 were cloned to expression vector pET21b. The vectors contained GP, PGM, G6PD and 6PGD genes were transformed into the host Escherichia coli BL21 (DE3)-CodonPlus-RIL to express recombinant enzymes, respectively. The recombinant enzymes were purified by Ni2+-affinity column chromatography. The purified recombinant G6PD and 6PGD, having the specific activities of 166.21 and 63.12 U/mg, respectively, were purified 4.58 and 1.75 fold with a yield of 52.11% and 61.93%, respectively. The molecular weight of the recombinant G6PD and 6PGD were 58 and 54 kDa, respectively. Optimal temperature of the recombinant G6PD and 6PGD was 75℃. Optimal pH of the recombinant G6PD and 6PGD was pH 8.0 and 7.5, respectively. The enzymes were quite stable at 40~60℃ and pH 4.5~9.5. The activity of recombinant G6PD would be completely inhibited by 5 mM Co2+ and Zn2+ ions. The activity of recombinant 6PGD would be slightly enhanced by 5 mM Ca2+ ions. The activity of recombinant 6PGD would be completely inhibited by 5 mM Cu2+ and Zn2+ ions. The recombinant G6PD had kcat for NADP+ and glucose-6-phosphate were 3.286 and 2.228 s-1, respectively, KM were 0.024 and 0.029 mM, respectively, and kcat/KM were 135.73 and 77.66 s-1.mM-1, respectively. The recombinant 6PGD had kcat for NADP+ and 6-phosphogluconate were 0.978 and 0.755 s-1, respectively, KM were 0.045 and 0.016 mM, respectively, and kcat/KM were 21.77 and 47.46 s-1.mM-1, respectively. In this study, we have established expression, purification and characterization of target enzymes, which could be the basis of producing hydrogen from starch and water.
目錄

目錄 …………….………………………………………………….. Ⅳ
表目錄 ……..……….……………………………………………… Ⅷ
圖目錄 …………..….……………………………………………… Ⅸ
壹、前言 …………………………………………………………... 1
貳、文獻整理 ..................................................................................... 3
1 氫氣生產 …………………………………….…………… 3
1.1 氫氣生產的路徑 …………..………………………… 3
1.2 利用澱粉及水做為原料以合成的酵素路徑 (synthetic enzymatic pathway) 生產氫氣 .…………. 4
2 氫氣生產的相關酵素 ……………………………………. 5
2.1 肝醣磷酸水解? ………………………………..…… 5
2.2 磷酸葡萄糖變位? …………………………….……. 6
2.3 葡萄糖 6-磷酸脫氫? ……………...…………..…… 8
2.4 6-磷酸葡萄糖酸脫氫? ……………………..……….. 9
3 Restriction-Free (RF) cloning ………………………….….. 12
附錄一 …………………………………………..……………. 14
參、實驗流程設計 ………………………………………………... 15
肆、材料與方法 …………………………………………………... 16
一、實驗材料 ……………………………………………….. 16
1 菌株與載體 ……………………………….…………… 16
1.1 GP、PGM、G6PD 及 6PGD 基因來源 …………. 16
1.2 菌株來源 …………………………………….……. 16
1.3 載體來源 …………………………………….……. 16
2 標準品 ………………………………………….……… 16
2.1 DNA 標準品 (Marker) …………….………….…... 16
2.2 蛋白質標準品 (Marker) …………………..…..…... 16
3 酵素 …………………………………………….……… 16
3.1 聚合? ……………………………….……………. 16
3.2 限制? ………………………….…………………. 17
4 市售套組 ……………………….……………………… 17
5 培養基材料 ……………………………………….…… 17
6 化學藥品 ……………………………………….……… 17
7 儀器設備 ……………………….……………………… 19
二、實驗方法 ……………………………………………….. 20
1 選殖、擴增 Thermoanaerobacterium sp. NTOU2 之GP、PGM、G6PD 及 6PGD 基因 ………………….. 20
1.1 製備小量質體 DNA ……………………………..... 20
1.2 DNA 濃度之定量 …………………..…………..…. 21
1.3 LB 培養基之製備 ……..………………………….. 22
1.4 Restriction-Free (RF) cloning 之 PCR 反應 …….. 22
1.4.1 設計 RF cloning 之引子 …..………………... 22
1.4.2 TE buffer 之製備 …..…………………………. 22
1.4.3 RF cloning 之 PCR 反應 ….………………… 22
1.4.3.1 第一階段 PCR 反應 ………..…………... 22
1.4.3.2 第二階段 PCR 反應 ….…………..…….. 23
1.4.3.3 PCR 反應產物純化 ……………….....…... 24
1.4.3.4 第三階段 PCR 反應 ………..…….…….. 25
1.5 模板股 DNA 之剪切 ……..……………….……... 25
1.6 製備電穿孔勝任細胞 E. coli DH5α ……..……….. 26
1.7 電穿孔轉形作用 (electroporation) …………...…... 26
1.8 以 colony PCR 篩選轉形株 ………………..……. 27
1.8.1 colony PCR 反應之溶液組成 ……………..…. 27
1.9 膠體電泳分析 ………………….…………………. 28
1.10 序列分析 …………………………………….…... 28
1.11 菌種保存 ………………………………….……... 28
2 重組目標酵素 (GP、PGM、G6PD 及 6PGD) 之蛋白質表現與純化 ………………….……………………… 28
2.1 製備電穿孔勝任細胞 E. Coli
BL21(DE3)-CodonPlus-RIL ………….…………… 28
2.2 重組目標酵素 (GP、PGM、G6PD 及 6PGD) 於大腸桿菌中之表現 ………………………………...
29
2.3 重組目標酵素 (GP、PGM、G6PD 及 6PGD) 的純化 …………………….………………………… 29
2.4 蛋白質定量 ……………………………….………. 30
2.4.1 定量蛋白質之相關試劑的製備 ………….….. 31
2.5 蛋白質電泳分析 …………………………….……. 31
2.5.1 膠體成份 ………………………………….….. 31
2.5.2 膠體製備 ……………………………………... 32
2.6 膠電泳之操作方法 ………………………….……. 32
2.6.1 膠片的染色與脫色 ……………………….….. 33
2.6.2 染色液的製備 ……………………….……….. 33
2.6.3 脫色液的製備 ………………………………... 33
3 重組目標酵素 (G6PD 及 6PGD) 的特性探討 ….….. 34
3.1 測定酵素活性 ………………………………….…. 34
3.1.1 glucose-6-phosphate dehydrogenase 的活性測定 ..……………………………………………. 34
3.1.2 6-phosphogluconic dehydrogenase 的活性測定 34
3.2 最適作用溫度 ………………………………….…. 34
3.3 最適作用pH探討 …………………….…………... 35
3.4 熱穩定性探討 …………………………….………. 35
3.5 pH穩定性探討 …………………………….……… 35
3.6 金屬離子對活性的影響 …………………….……. 35
4 酵素動力學之分析 ….…….…….…….…….…….…... 36
4.1 重組型 G6PD 之酵素動力學分析 …….……...… 36
4.2 重組型 6PGD 之酵素動力學分析 …..…….……. 36
伍、結果與討論 ................................................................................. 37
一、Thermoanaerobacterium sp. NTOU2 之 GP、PGM、G6PD 及 6PGD 基因的擴增與選殖 ........................... 37
二、重組目標酵素 (GP、PGM、G6PD 及 6PGD) 之蛋白質表現與純化 ................................................................. 38
三、重組型 G6PD 的特性探討 ............................................. 40
1 最適作用溫度 ................................................................. 41
2 最適作用 pH ................................................................... 41
3 熱穩定性 ......................................................................... 41
4 pH 穩定性 ....................................................................... 42
5 金屬離子之影響 ............................................................. 42
四、重組型 6PGD 的特性探討 ............................................. 42
1 最適作用溫度 ................................................................. 42
2 最適作用 pH ................................................................... 43
3 熱穩定性 ......................................................................... 43
4 pH 穩定性 ....................................................................... 43
5 金屬離子之影響 ............................................................. 44
五、酵素動力學分析 ............................................................... 44
1 重組型 G6PD 之酵素動力學分析 ............................... 44
2 重組型 6PGD 之酵素動力學分析 ............................... 45
陸、結論 ............................................................................................. 47
柒、參考文獻 ..................................................................................... 48

表目錄

表一、RF cloning 第一階段 PCR 之引子組序列 …...………….. 57 
表二、RF cloning 第二階段 PCR 之引子組序列 .……………… 58
表三、表現於大腸桿菌 BL21(DE3)-CodonPlus-RIL 之 重組型 G6PD 之純化表 .………………………………………..… 59
表四、表現於大腸桿菌 BL21(DE3)-CodonPlus-RIL 之 重組型 6PGD 之純化表 .……….…………………………………. 60
表五、重組型 G6PD 由不同濃度 NADP+ 和固定濃度 G6P 與由不同濃度 G6P 和固定濃度 NADP+ 之酵素動力學分析 ........................................................................................... 61
表六、重組型 6PGD 由不同濃度 NADP+ 和固定濃度 6PG 與由不同濃度 6PG 和固定濃度 NADP+ 之酵素動力學分析 ........................................................................................... 62

圖目錄

圖一、以 GPF、GPR、PGMF、PGMR、G6PDF、G6PDR、6PGDF 及 6PGDR引子進行 RF cloning 第一階段 PCR 擴增的產物之洋菜醣膠體電泳分析圖 ……………………..……………….…………………….. 63 
圖二、以 5’ Nde I 及 3’ Hind III 引子進行 RF cloning 第二階段 PCR 擴增的產物之洋菜醣膠體電泳分析圖 ……………………..……………….…………………… 64
圖三、RF cloning 第三階段 PCR 產物之洋菜醣膠體電泳分析圖 ………………………………………………………...… 65
圖四、以 PCR 方式快速篩選重組質體之洋菜醣膠體電泳分析圖 ……….………………….………………………………. 66
圖五、含有 pET-21b-NTOU2-gp 之 E. coli BL21(DE3)-CodonPlus-RIL 以不同濃度 IPTG 誘導後菌體內總蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ... 67
圖六、含有 pET-21b-NTOU2-pgm 之 E. coli BL21(DE3)-CodonPlus-RIL 以不同濃度 IPTG 誘導後菌體內總蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ... 68
圖七、含有 pET-21b-NTOU2-g6pd 之 E. coli BL21(DE3)-CodonPlus-RIL 以不同濃度 IPTG 誘導後菌體內總蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ... 69
圖八、含有 pET-21b-NTOU2-6pgd 之 E. coli BL21(DE3)-CodonPlus-RIL 以不同濃度 IPTG 誘導後菌體內總蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ... 70
圖九、重組型 GP 之粗酵素液以不同溫度熱處理後之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ............................... 71
圖十、重組型 PGM 之粗酵素液以不同溫度熱處理後之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ........................... 72
圖十一、重組型 G6PD 之粗酵素液以不同溫度熱處理後之蛋白
質分布情形的 SDS-PAGE 膠電泳分圖 ......................... 73
圖十二、重組型 6PGD 之粗酵素液以不同溫度熱處理後之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ...................
74
圖十三、以牛血清蛋白 (BSA) 為標準品之蛋白質定量分析的檢量線 ..................................................................................... 75
圖十四、NADPH 標準曲線 ............................................................. 76
圖十五、重組型 GP 表現和純化過程之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ............................................. 77
圖十六、重組型 PGM 表現和純化過程之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ............................................. 78
圖十七、重組型 G6PD 表現和純化過程之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ............................................. 79
圖十八、重組型 6PGD 表現和純化過程之蛋白質分布情形的 SDS-PAGE 膠電泳分析圖 ............................................. 80
圖十九、溫度對重組型 G6PD 酵素活性之影響 ........................... 81
圖二十、pH 對重組型 G6PD 酵素活性之影響 ........................... 82
圖二十一、重組型 G6PD 之熱?定性 ........................................... 83
圖二十二、重組型 G6PD 之 pH ?定性 ...................................... 84
圖二十三、金屬離子對重組型 G6PD 酵素活性之影響 ............... 85
圖二十四、溫度對重組型 6PGD 酵素活性之影響 ....................... 86
圖二十五、pH 對重組型 6PGD 酵素活性之影響 ........................ 87
圖二十六、重組型 6PGD 之熱?定性 ........................................... 88
圖二十七、重組型 6PGD 之 pH ?定性 ...................................... 89
圖二十八、金屬離子對重組型 6PGD 酵素活性之影響 ............... 90
黃幸光,2003,嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖?糊精生成?的生產與特性探討,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
蘇惠君,2007,麥芽寡糖?海藻糖水解?的基因選殖、特性探討與基因重組,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
林乃頌,2008,Thermoanaerobacterium sp. NTOU2 之局部基因體序列解析與註解,國立臺灣海洋大學生物科技研究所碩士學位論文,基隆。
Adams MJ, Gover S, Leaback R, Phillips C and Somers DO. (1991) The structure of 6-phosphogluconate dehydrogenase refined at 2.5 A resolution. Acta. Crystallogr. B. 47(5):817-20.
Adams MJ, Ellis GH, Gover S, Naylor CE and Phillips C. (1994) Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: Implications for NADP specificity and the enzyme mechanism. Structure 2(7):651-68.
Adams MWW and Stiefel EI. (1998) Biological hydrogen production: Not so elementary. Science 282:1842-3.
Akutsu J, Zhang Z, Tsujimura M, Sasaki M, Yohda M and Kawarabayasi Y. (2005) Characterization of a thermostable enzyme with phosphomannomutase/phosphoglucomutase activities from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. J. Biochem. 138(2):159-66.
Aslanidis C and de Jong PJ. (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18(20):6069-74.
Barrett MP and Le Page RW. (1993) A 6-phosphogluconate dehydrogenase gene from Trypanosoma brucei. Mol. Biochem. Parasitol. 57(1):89-9.
Basic Local Alignment Search Tool. (2009) http://blast.ncbi.nlm.nih.gov/Blast.cgi (30/06/2009)
Boeck B and Schinzel R. (1996) Purification and characterisation of an alpha-glucan phosphorylase from the thermophilic bacterium Thermus thermophilus. Eur. J. Biochem. 239(1):150-5.
Bradford M. (1976) A rapid and sensitive method for the quantitation of microgram quanties of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:259-75.
Besrdsmore AJ, Aperghis PNG and Quayle JR. (1982) Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during growth of Methylophilus methylotrophus on methanol. J. Gen. Microbiol. 128:1423-39.
Canatella PJ, Karr JF, Petros JA and Prausnitz MR. (2001) Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys. J. 80:755-64.
Carmel-Harel O and Storz G. (2000) Roles of the glutathione- and thioredoxin- dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54:439-61.
Ciftci M, Ciltas A and Erdogan O. (2004) Purification and characterization of glucose 6-phosphate dehydrogenase from rainbow trout (oncorhynchus mykiss) erythrocytes. Vet. Med. Czech. 49(9):327-33.
Corpas FJ, Garcia-Salguero L, Barroso JB, Aranda F and Lupianez JA. (1995) Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex. Mol. Cell Biochem. 144(2):97-104.
Cortright RD, Davda RR and Dumesic JA. (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418(6901):964-7.
Das D and Veziroglu TN. (2001) Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26:13-28.
Davis BJ (1964) Disc Electrophoresis Ⅱ: Methods and application to human serum proteins. Ann. N.Y. Acad. Sci. 404-27.
Deluga GA, Salge JR, Schmidt LD and Verykios XE. (2004) Renewable hydrogen from ethanol by autothermal reforming. Science 303(5660):993-7.
Felfoldi F, Kupihar Z, Bottka S and Puskas LG. (1997) Direct ligation of human CD4 polymerase chain reaction fragment into vectors at specific restriction sites with positional heterostagger cloning. Anal. Biochem. 253:275-7.
Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, Okada S and Kuriki T. (2003) Bioengineering and application of novel glucose polymers. Biocatal. Biotransform. 21:167-72.
Goulielmos GN, Cosmidis N, Eliopoulos E, Loukas M and Zouros E. (2006) Cloning and structural characterization of the 6-phosphogluconate dehydrogenase locus of the medfly Ceratitis capitata and the olive fruit fly Bactrocera oleae. Biochem. Biophys. Res. Commun. 341(3):721-7.
Hallenbeck PC and Benemann JR. (2002) Biological hydrogen production: fundamentals and limiting processes. Int. J. Hydrogen Energy 27:1185-93.
Hanau S, Rippa M, Bertelli M, Dallocchio F and Barrett MP. (1996) 6-Phosphogluconate dehydrogenase from Trypanosoma brucei. Kinetic analysis and inhibition by trypanocidal drugs. Eur. J. Biochem. 240(3):592-9.
Harlow E and Lane D. (1988) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York.
He W, Wang Y, Liu W and Zhou CZ. (2007) Crystal structure of Saccharomyces cerevisiae 6-phosphogluconate dehydrogenase Gnd1. BMC Struct. Biol. 7:38.
Hoffert MI, Caldeira K, Benford G, Criswell DR, Green C, Herzog H, Jain AK, Kheshgi HS, Lackner KS, Lewis JS, Lightfoot HD, Manheimer W, Mankins JC, Mauel ME, Perkins LJ, Schlesinger ME, Volk T and Wigley TM. (2002) Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science 298(5595):981-7.
Huber GW, Shabaker JW and Dumesic JA. (2003) Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science 300(5628):2075-7.
Jamieson DJ. (1998) Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16):1511-27.
Jiang W and Niehaus WG Jr. (1986) Effect of metal ions on glucose-6-phosphate dehydrogenase of fungi, bacteria, and rat. Exp. Mycol. 10(4):289-93.
Kiriuchin M Y, Kletsova LV, Chistoserdov AY and Tsygankov YD. (1988) Properties of glucose 6-phosphate and 6-phosphogluconate dehydrogenases of the obligate methylotroph Methylobacillus flagellatum KT. FEMS Microbiol. Lett. 52:199-204.
Kletzien RF, Harris PK and Foellmi LA. (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 8:174-81.
Koda A, Bogaki T, Minetoki T and Hirotsune M. (2005) High expression of a synthetic gene encoding potato alpha-glucan phosphorylase in Aspergillus niger. J. Biosci. Bioeng. 100(5):531-7.
Krebs EG. (1986) The enzymology of control by phosphorylation. The Enzymes (Boyer PD and Krebs EG, eds). 3rd ed., Vol. 17, pp. 3-20, Academic Press, New York.
Levin S, Almo SC and Satir BH. (1999) Functional diversity of the phosphoglucomutase superfamily: Structural implications. Protein Eng. 12(9):737-46.
Lin Z, Konno M, Abad-Zapatero C, Wierenga R, Murthy MR, Ray WJ Jr and Rossmann MG. (1986) The structure of rabbit muscle phosphoglucomutase at intermediate resolution. J. Biol. Chem. 261:264-74.
Mathews CK, van Holde KE and Ahern KG. (2000) Biochemistry. 3rd ed., Addison Wesley Longman, Inc. 446-591. San Francisco, CA, USA.
Mohit J, Brenner AD, Jui L, Lim CC, Wang B and Pinentel DR. (2003) Glucose-6-Phosphate Dehydrogenase Modulates Cytosolic redox status and contractile phenotype in adult cardiomyocytes. Circ. Res. 93:9-16.
Montin K, Cervellati C, Dallocchio F and Hanau S. (2007) Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase. FEBS J. 274(24):6426-35.
Morris D. (2006) The next economy: From dead carbon to living carbon. J. Sci. Food Agric. 86:1743-6.
Nelson DL and Cox MM. (2000) Lehninger Principles of Biochemistry. 3rd ed., Worth Publishers. New York, USA.
Neuhoff V, Arold N, Tanbe D and Ehrhsrdt W. (1988) Improved staining of proteins in polyacrylamide gels inclusing isoelectric focusing gel wits clear background at nanogram sensitivity using coomassie brilliant blue G-250. Electrophoresis. 9:255-62.
Ohara H, Uchida K, Yahata M and Kondo H. (1996) NAD-specific 6-phosphogluconate dehydrogenase in lactic acid bacteria. Biosci. Biotech. Biochem. 60:692-3.
Okonomakos NG, Acharya K and Johnson LN. (1991) Rabbit muscle glycogen phosphorylase b; the structural basis of activation and control. Post-Translational Mod/l cation of Proteins (Crabbe J and Harding J, eds). CRC Press. Boca Raton, Florida.
Palmer AM. (1999) The activity of the pentose phosphate pathway is increased in response to oxidative stress in Alzheimer's disease. J. Neural. Transm. 106(3-4):317-28.
Phillips C, Dohnalek J, Gover S, Barrett MP and Adams MJ. (1998) A 2.8 A resolution structure of 6-phosphogluconate dehydrogenase from the protozoan parasite Trypanosoma brucei: comparison with the sheep enzyme accounts for differences in activity with coenzyme and substrate analogues. J. Mol. Biol. 282(3):667-81.
Qian N, Stanley GA, Hahn-Hagerdal B and Radstrom P. (1994) Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells. J. Bacteriol. 176(17):5304-11.
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R and Tschaplinski T. (2006) The path forward for biofuels and biomaterials. Science 311:484-9.
Rashtchian A, Buchman GW, Schuster DM and Berninger MS. (1992) Uracil DNA glycosylase-mediated cloning of polymerase chain reaction-amplified DNA: application to genomic and cDNA cloning. Anal. Biochem. 206:91-7.
Rosemeyer MA. (1987) The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem. Funct. 5(2):79-95.
Salati LM and Amir-Ahmady B. (2001) Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu. Rev. Nutr. 21:121-40.
Schlapbach L and Zuttel A. (2001) Hydrogen-storage materials for mobile applications. Nature 414:353-8.
Schmitz G, Hohage H and Ullrich K. (1993) Glucose-6-phosphate: A key compound in glycogenosis I and favism leading to hyper- or hypolipidaemia. Eur. J. Pediatr. 152:S77-84.
Scopes DA, Bautista JM, Naylor CE, Adams MJ and Mason PJ. (1998) Amino acid substitutions at the dimer interface of human glucose-6-phosphate dehydrogenase that increase thermostability and reduce the stabilising effect of NADP. Eur. J. Biochem. 251(1-2):382-8.
Scott WA and Tatum EL. (1971) Purification and partial characterization of glucose 6-phosphate dehydrogenase from Neurosopora crassa. J. Biol. Chem. 246(20):6347-52.
Scott WA and Abramsky T. (1973) Neurospora 6-phosphogluconate dehydrogenase. I. Purification and characterization of the wild type enzyme. J. Biol. Chem. 248(10):3535-41.
Sigfusson TI. (2007) Pathways to hydrogen as an energy carrier. Phil. Trans. R. Soc. A 365(1853):1025-42.
Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill KM, Fletterick RJ, Madsen NB and Johnson LN. (1988) Protein phosphorylation: Structural changes between glycogen phosphorylase b and a. Nature (London) 336:215-21.
Steele BCH and Heinzel A. (2001) Materials for fuel-cell technologies. Nature 414:345-52.
Sundaramoorthy R, Iulek J, Barrett MP, Bidet O, Ruda GF, Gilbert IH and Hunter WN (2007) Crystal structures of a bacterial 6-phosphogluconate dehydrogenase reveal aspects of specificity, mechanism and mode of inhibition by analogues of high-energy reaction intermediates. FEBS J. 274(1):275-86.
Tando?an B and Ulusu NN. (2005) Characterization of glucose 6-phosphate dehydrogenase purified from lamb kidney cortex. Turk. J. Biochem. 30(2):178-82.
Tetaud E, Hanau S, Wells JM, Le Page RW, Adams MJ, Arkison S and Barrett MP. (1999) 6-Phosphogluconate dehydrogenase from Lactococcus lactis: A role for arginine residues in binding substrate and coenzyme. Biochem. J. 338(1):55-60.
Tillett D and Neilan BA. (1999) Enzyme-free cloning: A rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res. 27:e26.
Toyokuni S, Okamoto K, Yodoi J and Hiai H. (1995) Persistent oxidative stress in cancer. FEBS. Lett. 358(1):1-3.
Ulusu NN and Tando?an B. (2006) Purification and kinetics of sheep kidney cortex glucose-6-phosphate dehydrogenase. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 143(2):249-55.
van den Ent F and Lowe J. (2006) RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods. 67(1):67-74.
Viedeira PA, Cortes LL, Fialho AM and Sa-Correia I. (2000) Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl. Environ. Microbiol. 66:2252-8.
Vulliamy T, Mason P and Luzzatto L. (1992) The molecular basis of glucose-6-phosphate dehydrogenase deficiency. Trends Genet. 8:138-43.
Weinhausel A, Nidetzky B, Rohrbach M, Blauensteiner B and Kulbe KD. (1994) A new maltodextrin-phosphorylase from Corynebacterium callunae for the production of glucose-1-phosphate. Appl. Microbiol. Biotechnol. 41:510-6.
Weinhausel A, Nidetzky B, Kysela C and Kulbe KD. (1995) Application of Escherichia coli maltodextrin phosphorylase for the continuous production of glucose-1-phosphate. Enzyme Microb. Technol. 17:140-6.
Wierenga R, Lewis DG, Rossmann MG and Ray WJ Jr. (1981) The structure determination of rabbit phosphoglucomutase. Philos. Trans. R. Soc. London, Ser. B: Biol. Sci. 293:205-8.
Zhang YH, Evans BR, Mielenz JR, Hopkins RC and Adams MW. (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. Plos One 2(5):e456.
Zhou MY and Gomez-Sanchez CE. (2000) Universal TA cloning. Curr. Issues Mol. Biol. 2:1-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊