(3.236.118.225) 您好!臺灣時間:2021/05/14 11:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方雅玄
研究生(外文):Ya-Hsuan Fang
論文名稱:盲鰻組織貯藏期間之化學變化及其酵素水解物抗氧化活性之探討
論文名稱(外文):Changes in chemical compositions of hagfish tissues during storage and their antioxidant activities of enzymatic hydrolysates
指導教授:蕭泉源蕭泉源引用關係
指導教授(外文):Chyuan-Yuan Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:99
中文關鍵詞:盲鰻抗氧化
外文關鍵詞:hagfishantioxidant activity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:234
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
盲鰻(hagfish)為最原始無顎的脊椎動物,在台灣主要分佈於宜蘭、屏東及台東一帶,本論文主要目的在探討盲鰻組織貯藏期間之化學變化及其酵素水解物之抗氧化活性。布氏黏盲鰻 (Eptatretus burgeri) 肌肉於25℃及4℃貯藏期間,pH值分別呈上升及先降後升現象,而黏液囊之變化不明顯。盲鰻貯藏初期肌肉揮發性鹽基態氮(VBN)為5 mg/100 g,於4℃貯藏12天已超過限量標準 (25 mg/100 g),於25℃貯藏24小時則達37.87 mg/100 g,而黏液囊VBN增加速率較肌肉慢。盲鰻肌肉與黏液囊之核?酸化合物以尿?酸 (uridine monophosphate, UMP)、肌?酸 (inosine-5’-phosphate, IMP)、肌? (inosine, HxR) 與次黃嘌呤 (hypoxanthine, Hx) 為主,UMP在貯藏期間變化小,但 IMP 則易分解為HxR及Hx,K值亦隨時間增加,而黏液囊K值之增加尤為顯著。游離胺基酸 (free amino acid, FAA) 組成以脯胺酸 (proline, Pro) 最多,4℃與25℃貯藏期間總量有先增後減的趨勢。肌肉與黏液囊於4℃貯藏9天及12天清除DPPH 自由基能力顯著增加,而於25℃貯藏則無明顯差異;兩種組織於貯藏期間之還原力變化不顯著。肌肉萃取液對亞鐵離子之螯合能力隨貯藏時間而下降,黏液囊貯藏於4℃與25℃期間,其螯合鐵離子能力分別呈先升後降與增加之趨勢。
紫黏盲鰻 (Eptatretus okinoseanus) 肌肉與黏液囊經Alcalase和Protamex酵素水解後,可溶性蛋白質含量隨水解時間增加,但表皮水解液卻呈下降趨勢。三種組織之胺基含量隨水解時間增加,以表皮之胺基含量較高。紫黏盲鰻肌肉、表皮與黏液囊之游離胺基酸皆以Pro最多,占總FAA之15~19%,除表皮Protamex水解液於水解15小時總FAA含量有下降之現象外,其餘組織水解液則隨水解時間延長而增加,而Protamex水解之效果較Alcalase佳。三種組織中,表皮之胜?類胺基酸 (constituted amino acid, CAA) 總量最高,肌肉以Protamex酵素水解產生胜?之效果較Alcalase佳。三種組織於水解期間DPPH自由基清除能力皆顯著增加,其中以肌肉水解液之效果較佳,各水解液亦皆有抑制亞麻油酸過氧化之能力,但還原力皆無明顯變化,螯合亞鐵離子能力卻隨水解時間延長而有下降趨勢。
Hagfish is the most primitive non-jaw vertebrate which was mainly distributed in Yilan, Pingtong and Taitung areas of Taiwan. The main purposes of this research are to investigate the changes in chemical compositions of hagfish tissues during storage and their antioxidant activities of enzymatic hydrolysates. The pH value of Eptatretus burgeri muscle increased gradually during storage at 25℃. When stored at 4℃, however, the pH value decreased and then increased. For mucus glands, no significant changes in pH value were found. The volatile basic nitrogen (VBN) in the initial stage of the muscle was 5 mg/100 g. After storage at 4℃ for 12 days, VBN exceeded the limited value of 25 mg/100 g, and the value reached 37.87 mg/100 g after storage at 25℃ for 24 hours. The increase of VBN in the muscle was more quickly than that of mucus gland. The dominant ATP-related compounds in the muscle and mucus gland were uridine monophosphate (UMP), inosine-5’-phosphate (IMP), inosine (HxR) and hypoxanthine (Hx). No significant change in the UMP was found during storage. But the decomposition of IMP and HxR resulted in the accumulation of Hx. K value increased during storage, and mucus glands showed more significant changes. The major free amino acid (FAA) of muscle and mucus glands was proline. The total FAA amount increased in the beginning and decreased in the later stage of storage at 4℃and 25℃. The scavenging effect of DPPH radical significantly increased after storage at 4℃ for 9 days and 12 days, but no significant change was found at 25℃. Reducing power showed no marked difference between tissues during storage. The chelation of ferrous ion of the muscle decreased gradually during storage. For mucus glands it increased in the beginning and decreased in the later stage of storage at 4℃, but increased at 25℃.
The soluble protein of Eptatretus okinoseanus muscle and mucus glands hydeolysates with Alcalase and Protamex increased during hydrolysis, but fish skin hydrolysate decreased gradually. The amino group of three tissue hydrolysates increased gradually during hydrolysis, of which fish skin hydrolysate had the highest value. The predominant FAA in Eptatretus okinoseanus muscle, skin and mucus glands was proline, accounting for 15% to 19% of the total FAA. The FAA of Protamex skin hydrolysate decreased after 15 hour hydrolysis, but other tissue hydrolysates increased gradually during hydrolysis. The amino group of Protamex hydrolysate had a higher amount than Alcalase. The total constituted amino acid (CAA) in fish skin hydrolysate was higher than that of other hydrolysates. The production of peptides with Protamex hydrolysis on the muscle had the higher efficiency than Alcalase. The scavenging effect of DPPH radical of all hydrolysates increased significantly with the hydrolysis time, and the muscle hydrolysate had the highest ability. All tissue hydrolysates possessed the ability to inhibit linoleic acid autoxidation. The reducing power of all hydrolysates showed no significant change during hydrolysis. In addition, the ferrous ion chelation of the hydrolysates decreased with the increase of time.
中文摘要 I
英文摘要 III
目錄 V
表目錄 VIII
圖目錄 IX
附錄 X
壹、前言 1
貳、文獻整理 2
一、盲鰻簡介 2
(一) 分類地位 2
(二) 分布 2
(三) 型態特徵 3
(四) 生活習性 3
(五) 生化學組成 4
二、魚貝類的萃取物成分 4
(一) 游離胺基酸 5
(二) 雙胜?類 6
(三) 核?酸及其相關化合物 6
三、影響魚貝類鮮度品質之因素 7
(一) 死後僵直 7
(二) 嫌氧性醣解 7
(三) 自家消化 8
(四) 貯存溫度 8
四、魚貝類鮮度判定指標 9
(一) 感官檢測 (organoleptic evaluation) 9
(二) pH值 9
(三) K值 10
(四) 揮發性鹽基態氮 (volatile basic nitrogen, VBN) 10
(五) 總生菌數 (aerobic plate count, APC) 11
五、蛋白質水解 12
(一) 酸水解 12
(二) 鹼水解 13
(三) 自家消化 13
(四) 酵素水解 14
六、抗氧化劑 15
(一) 抗氧化劑簡介 15
(二) 抗氧化劑之種類 15
1. 自由基終止劑 15
2. 還原劑或氧清除劑 15
3. 金屬螯合劑 16
4. 單重氧抑制劑 16
七、蛋白質水解物之抗氧化性 16
(一) 影響抗氧化性的因子 16
1. 酵素種類與水解程度之影響 16
2. 分子量大小之影響 17
3. 胜?胺基酸組成之影響 18
(二) 不同來源蛋白質或胜?之抗氧化性 19
1. 動物性來源之蛋白質水解物 19
2. 植物性來源之蛋白質水解物 22
參、材料與方法 23
一、實驗項目與材料 23
(一) 布氏黏盲鰻死後貯藏期間生化學成分之變化 23
1. 樣品來源及處理 23
(二)紫黏盲鰻酵素水解液抗氧化能力之探討 23
2. 實驗用酵素 23
3. 盲鰻各組織部位蛋白質酵素水解液 23
4. 分析項目 24
5. 實驗藥品 24
6. 實驗儀器設備 24
二、萃取液之調製 25
(一) TCA萃取液 25
(二) PCA萃取液 25
三、分析方法 26
(一) pH 值 26
(二) 揮發性鹽基態氮 (Volatile basic nitrogen, VBN) 26
(三) 核?酸相關化合物及K值 26
(四) 游離胺基酸與雙胜? 27
(五) 胜?類胺基酸 27
(六) 可溶蛋白質含量 27
(七) 胺基含量 27
(八) 抑制亞麻油酸過氧化之能力 28
(九) 清除α,α-Diphenyl-β-picrylhydrazyl (DPPH) 自由基能力 28
(十) 還原力 29
(十一) 螯合鐵離子能力 29
四、統計分析 29
肆、結果與討論 30
一、布氏黏盲鰻死後貯藏期間之生化學與抗氧化能力之變化 30
(一) pH 值與揮發性鹽基態氮 30
(二) ATP 相關化合物與K值 31
(三) 游離胺基酸與雙胜? 32
(四) 抗氧化性 34
1. 清除α,α-diphenyl-β-picrylhydrazyl (DPPH) 自由基之能力 34
2. 還原力 35
3. 亞鐵離子螯合能力 35
(五) 抗氧化能力與生化學特性之關係 36
二、盲鰻不同組織酵素水解液化學特性與抗氧化能力之探討 37
(一) pH值 37
(二) 可溶性蛋白質和胺基含量 37
(三) 游離胺基酸與胜?類胺基酸 38
1. 游離胺基酸 38
2. 胜?類胺基酸 39
(四) 抗氧化能力 40
1. 清除DPPH自由基之能力 40
2. 還原力 41
3. 亞鐵離子螯合能力 41
4. 抑制亞麻油酸氧化能力 42
伍、結論 44
陸、參考文獻 45
Aanlyng, M. D., Martens, M., Poll L., Nielsen, P. M., Fltge, H. and Larsen, L. M. 1998. Chemical and sensory characterization of hydrolyzed vegetable protein as a flavoring. J. Agric. Food Chem. 46(2): 481-489.
Ababouch, L., Afilal, M. E., Benabdeljelil, H. and Busta, F. F. 1997. Quantitative changes in bacteria, amino acids and biogenic amines in sardine (Sardina pilchardus) stored at ambient temperature (25-28℃) and in ice. Intl. J. Food. Sci. Tech. 26: 297-306.
Abe, H. 1995. Histidine-related dipeptides: Distribution, metabolism, and physiological function. In “Biochemistry and Molecular Biology of Fishes”, Hochachka, P. W. and Mommsen, T. P. (Eds.), Elsevier, Amsterdam. pp. 309-333.
Amarowicz, R. and Shahidi, F. 1997. Antioxidant activity of peptide ractions of capelin protein hydrolyzates. Food Chem. 58: 355-359.
Amono, H., Fujiyoshi, T. and Noda, N. 1989. Change of free L-histidine and anserine levels in the muscle of starved whitefish (Coregonus muksun). Bull. Jap. Soc. Sci. Fish. 55: 373-379.
Aoki, T., Takada, K. and Kunisaki, N. 1991. On the study of proximate composition, mineral, fatty acid, free amino acid, muscle hardness, and color difference of six species of wild and cultured fishes. Bull. Jap. Soc. Sci. Fish. 57: 1927-1934.
Arouma, O. I. 1994. Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxic. 32(7): 671-683.
Asakawa, M. 1996. Role of skin mucous substances in biological protection of fish: Function of sialic acid-containing glycoprotein in eel skin mucus. Nippon Suisan Gakkaishi 62: 291-292.
Aubrey, G. and Kobayashi, H. 1990. The hagfishery of Japan. Fisheries 15(4): 12-18.
Blenford, D. E. 1994. Protein hydrolysates: Functionalities and uses in nutritional products. Intl. Food Ingred. 3: 45-49.
Boldyrev, A. A. 1993. Does carnosine possess direct antioxidant activity? Intl. J. Biochem. 25(8): 1101-1107.
Boldyrev, A. A., Dupin, A., Pindel, E. and Severin, S. 1988. Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89: 245-250.
Bott, T. L., Deffner, J. S., Mccoy, E. and Foster, E. M. 1966. Clostridium botulism type E in fish of the Green Lakes. J. Bacterial. 91: 919.
Burt, J. R. and Simmonds, C. K. 1971. Hypoxanthine as indicator of freshness in iced cape hake before freezing and after thawing. In “Fish Inspection and Quality Control”, Kreuzer, R. (Ed), Fishing News Book, Blackwell, London, U. K. p. 196.
Celia, C. G., Silca-Duarte, J. B., Da Ponte, M. and Enes Dapkevivius, L. N. 1998. Storage temperature effect on histamine formation formation in big eye tuna and skipjack. J. Food Sci. 63: 644-647.
Chen, H. M., Muramoto, K. and Yamaguchi, F. 1995. Structural analysis of antioxidative peptides from soybean β-conglycinin. J. Agric. Food. Chem. 43(3): 574-578.
Chen, H. M., Muramoto, K., Yamauchi, F. and Nokihara, K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44: 2619-2622.
Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K. and Nokihara, K. 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 46: 49-53.
Chen, Y. W., Chang, H. W. and Mok, H. K. 2005. Phylogenetic position of Eptatretus chinensis (Myxinidae: Myxiniformes) inferred by 16S rRNA gene sequence and morphology. Zool. Studies 44: 111-118.
Church, F. C., Swaisgood, H. E., Porter, D. H. and Catignani, G. I. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 66: 1219-1227.
Cobb, B. F., Aoaniz, I. and Thomson, C. A. 1973. Biochemical and microbial studies on shrimp: Volatile nitrogen and amino acid analysis. J. Food Sci. 38: 341-347.
Cui, H. 1996. The Influence of Degree of Hydrolysis on the Structural and Functional Properties of Fish Protein Peptic Hydrolysate. Masters thesis, University of Washington, Seattle, W. A.
Decker, E. A. and Xu, Z. 1998. Minimizing rancidity in muscle foods. Food Technol. 52 (10): 54-59.
Decker, E. and Crum, A. 1991. Inhibition of oxidative rancidity in salted ground pork by carnosine. J. Food Sci. 56: 1179-1181.
Diniz, E. M. and Martin, A. M. 1997. Effect of the extract of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensm. Wiss. Technol. 30: 266-272.
Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y. and Yang, H. 2008. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 107: 1485-1493.
Donnelly, J. L., Decker, E.A. and McClements, D. J. 1998. Iron-catalyzed oxidation of menhaden oil as affected by emulsifiers. J. Food Sci. 63: 997-1000.
Downing, S. W., Salo, W. L., Spitzer, R. H. and Koch, E. A. 1981. The hagfish slime gland: A model system for studying the biology of mucus. Science 214: 1143-1145.
Dziezak, J. D. 1986. Preservatives: Antioxidant. Food Technol. 40: 94-102.
Fantasia, L. D. and Duran, A. P. 1969. Incidence of Clostridium botulinum type E in commercially and laboratory dressed white fish chugs. Food Technol. 23: 793.
Fernholm, B. 1974. Durnal variations in the behaviour of the hagfish Eptatretus burgeri. Mar. Biol. 27: 351-356.
Fernholm, B. 1981. Thread cells form the slime glands of hagfish (Myxinidae). Acta Zool. 62: 137-145.
Ferry, J. D. 1941. A fibrous protein form the slime of the hagfish. J. Boil. Chem. 138: 263-268.
Fletcher, G. C. and Statnam, J. A. 1988. Shelf-life of sterile of yellow-eyed mullet (Aldrichetta forsteri) at 4℃. J. Food Sci. 53: 1030-1035.
Frokjaer, S. 1994. Use of hydrolysates for protein supplementation. Food Technol. 48(10): 86-88.
Fudge, D. S., Levy, N., Chiu, S. and Gosline, J. M. 2005. Composition, morphology and mechanics of hagfish slime. J. Exp. Bio. 208: 4613-4625.
Gargouri-Bouzid, R., Hmida-Sayari, A., Bidani, A., Jaoua, L., Savoure, A. and Jaoua, S. 2005. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 169: 746-752.
Giese, J. 1996. Tools for preventing lipid oxidation. Food Technol. 50(11): 73-81.
Gildberg, A. 1993. Enzymatic processing of marine raw materials. Process Biochem. 28: 1-15.
Gildberg, A. and Raa, J. 1977. Properties of propionic acid/formic acid preserved silage of cod viscera. J. Sci. Food Agric. 28: 647-653.
Gill, I., Lopez-Fandino, R., Jorda, X. and Vulfson, E. N. 1996. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol. 18: 162-183.
Grigorakis, K., Taylor, K. D. A. and Alexia, M. N. 2003. Seasonal patterns of spoilage of ice-stored cultured gilthead sea bream (Sparus aurata). Food Chem. 81: 263-268.
Hatate, H. 1996. Antioxidative activity of ovalbumin hydrolysates and their synergistic effects with α-tocopherol. Nippon Shokuhin Kagaku Kogaku Kaishi 43: 719–722.
Hatate, H., Nagata, Y. and Kochi, M. 1990. Antioxidative effect of bovine serum albumin hydrolyzates and their synergistic effect with antioxidants. Yukagaku 39: 42-46.
Hilz, D. F., Dyer, W. J., Nowlan, S. and Dingle, J. R. 1971. Variation of biochemical quality indices by biological and technological factors. In“Fish Inspection and Quality Control”, Kreuzer, R. (Ed). Fishing Nesx Ltd., London. p. 191.
Hole, R. and Oines, S. 1991. Can fish silage be used as nutritional solution to reduce aquaculture waste when considering the slaughtering quality of fish. In “Nutritional Strategies and Aquaculturce Waste.” Cowey, C. B. and Cho, C. Y. (Eds.), Univ. of Guelph, Guelph, Canada. pp. 103-109.
Hultin, H. O. 1985. Characteristic of muscle tissue In “Food Chemistry”, Fennema, O. R. (Ed), Marcel Dekker Inc., New York. p.750.
Iwamoto, M., Yamanaka, H., Abe, H., Ushio, H., Watabe, S. and Hashimoto, K. 1988. ATP and creatine phosphate breakdown in spiked plaice muscle during storage and activities of some enzymes involved. J. Food Sci. 53: 1662-1665.
Je, J. Y., Kim, S. Y. and Kim, S. K. 2005a. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 221: 157-162.
Je, J. Y., Park, P. J., Kim, S. K. 2005b. Antioxidant activity of a peptides isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Intl. 38: 45-50.
Jiang, S. T., Lee, J. J. and Chen, H. C. 1996. Proteolysis of actomyosin by cathepsin B, L, L-like and X from mackerel (Scomber australasicus). J. Agric. Food Chem. 44(3): 769-773.
Jones, N. R. and Murray, J. 1964. Rapid measures of nucleotide dephosphorylation in iced fish muscle. Their values as indices of freshness and of inosine 5’-monophosphate concentration. J. Sci. Food Agric. 15: 763-774.
Jun, S.Y., Park, P. J., Jung, W. K. and Kim, S. K. 2004. Purification and characterization of an antioxidative peptide from enzymeatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. Eur. Food Res. Technol. 219: 20-26.
Ke, P. J., Smith-Lall, B., Helbig, N. and Yang, C. K. 1990. Evaluation and improvement of the quality of fresh atlantic queen crab (Chinoecetes opilio). Lebensm. Wiss. U. Technol. 23: 41-44.
Kim, S. H., Field, K. G., Chang, D. S., Wei, C. I. and An, H. 2001. Indetification of bacteria crucial to histamine accumulation in Pacific mackerel during storage. J. Food Prot. 63: 1556-1564.
Kim, S. K., Kim, Y. T., Byun, H. G., Nam, K. S., Joo, D. S. and Shahidi, F. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agri. Food Chem. 49: 1984-1989.
Kinsella, J. E. 1976. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. Nutr. 8(4): 219-280.
Kitts, D. D., Weiler, K. 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des. 9: 1309–1323.
Kohen, R., Yamamoto, Y., Cundy, K. and Ames, B. 1988. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 85: 3175-3179.
Komata, Y. 1990. Umami taste of seafoods. Food Rev. Intl. 6: 457-487.
Konosu, S. 1979. The taste of fish and shellfish. In “Food Taste Chemistry”, Boudreau, J. C. (Eds), ACS Symposium Series 115, ACS, Washington, D. C. pp. 185-203.
Konosu, S. and Yamaguchi, K. 1978. Role of extractive component of boiled crab in producing the characteristic flavor. In “Umami: A Basic Taste”, Kawamura, Y. and Kare, M. (Eds.), Marcel Dekker, Inc., N. Y. USA pp. 235-253.
Konosu, S. and Yamaguchi, K. 1982. The flavor compounds in fish and shellfish. In “Chemistry and Biochemistry of Marine Food Products”, Martin, R. E., Flick, G. J. and Ward, D. R. (Eds.), AVI Publishing, Inc., N. Y. pp. 367-372.
Konosu, S. and Yamaguchi, K. 1987. Role of extractive components of boiled crab in producing the characteristic flavor. In “Umami: A Basic Taste”, Kawamura, Y. and Kare, M. R. (Eds.), Marcel Dekker, Inc., N. Y. p. 235
Konosu, S., Watanabe, K. and Shimizu, T. 1974. Distribution of nitrogenous constituents in the muscle extracts of eight speciese of fish. Bull. Jap. Soc. Sci. Fish. 40: 909-914.
Krause, W. and Schmidt, K. 1974. Studies on the enzymatic hydrolysis of alkali-treated milk proteins. Untersuchungen zur enzymatischen hydrolyse von alkalibehandelten milchproteinen. Nahrung 18(8): 833-839.
Kristinsson, H. G. and Rasco, B. A. 2000. Fish protein hydrolysate: Production, biochemical and function properties. Crit. Rev. Food Sci. Nutr. 40(1): 43-81.
Kuo, J. M., Yeh, D. B. and Bonnie, S. P. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47: 3206-3209.
Labuza, T. P. 1985. An integrated approach to food chemistry. In“Food Chemistry”, Fennema, O. R. (Ed), Dekker, N. Y. pp. 766-772.
Lahl, W. J. and Braun, S. D. 1994. Emzymatic production of protein hydrolysates for food use. Food Technol. 48(10): 68-71.
Lee, Y. Z., Simpson, B. K. and Harrd, N. F. 1982. Supplementation of squid fermentation with proteolytic enzymes. J. Food Biochem. 6: 127-134.
Liston, J. 1980. Microbiology in fishery science. In “Advences in Fish Science and Technology”, Connell, J. J. Ed., pp. 138-156.
Lo, K. V., Liao, P. H. and Bullock, C. 1993. Silage production from salmon farm mortalities. Aquacult. Eng. 12: 37-45.
Loffler, A. 1986. Proteolytic enzymes: sources and applications. Food Technol. 40(1): 63-70.
Manley, C. H. and Ahmedi, S. 1995. The development of process flavors. Trends in Food Sci. and Technol. 6(2): 46-51.
Manley, C. H., Mcann J.S. and Swaine, R.L. 1981. The chemical bases of the taste and flavor enhancing properties of hydrolyzed protein. In “The Quality of Foods and Beverages”, Charalambous, G. and Inglett, G., Academic Press. (Eds.), Inc. New York. pp. 1- 61.
Mansur, M. A., Bhadra, A., Takamura, H. and Matoba, T. 2002. Effect of processing and storage on the radical scavenging activity of horse mackerel and sardine. Fish. Sci. 68: 1390-1392.
Marcuse, R. 1960. Antioxidative effect of amino-acids. Nature 186: 886-887.
Marcuse, M. 1962. The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. JAOCS 39: 97-103.
Matoba, T., Kuchiba, M., Kimura, M. and Hasegawa, K. 1988. Thermal degradation of flavor enhancers, inosine 5’-monophosphate and guanosine 5’-monophosphate in aqueous solution. J. Food Sci. 53: 1156-1159.
Matsumoto, M. and Yamanaka, H. 1990. Post-mortem biochemical changes in the muscle of kurumma prawn during storage and evaluation of the freshness. Nippon Suisan Gakkaishi 56: 1145-1149.
Mazorra-Manzano, M. A., Pacheco-Aguilar, R., Dlaz-Rojas, E. I. and Lugo-sanchez, M. E. 2000. Postmortem changes in black skipjack muscle during storage in ice. J. Food. Sci. 65: 774-779.
Mendes, R. 1999. Changes in biogenic amines of major Portuguese bluefish species during storage at different temperatures. J. Biochem. 23: 33-43.
Mendis, E., Rajapakse, N. and K, S. K. 2005a. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 53: 581-587.
Mendis, E., Rajapakse, N. and K, S. K. 2005b. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sci. 77: 2166-2178.
Min, D. B., Lee, S. H., and Lee, E. C. 1988. Singlet oxygen oxidation of vegetable oils. In “Flavor Chemistry of Lipid Foods”, Min, D.B. and Smouse, T. H. (Eds.), American Oil Chemists’ Society, Champaign, U.S.A. pp. 57-97.
Mok, H. K. and Chen, Y. W. 2001. Distribution of hagfish (Myxinidae; Myxiniformes) in Taiwan. Zool. Studies 40: 223-239.
Murase, H., Nagao, A. and Terao, J. 1993. Antioxidant and emulsifying activity of N-(long-chain-acyl) histidine and N-(long-chain-acyl) carnosine. J. Agric. Food Chem. 41: 1601-1604.
Murata, Y., Henmi, H. and Nishioka, F. 1994. Extractive components in the skeletal muscle from ten different species of scombroid fishes. Fish. Sci. 60: 473-478.
Namiki, M. 1990. Antioxidants/antimutagens in foods. Crit. Rev. Food Sci. Nutr. 29: 273-300.
Neogy, M., Datta, J., Roy, A. M. and Mukherji, S. 2002. Changes in nitrogen, amino acid and proline content in mung bean (Vigna radiate L. Wilczek) seedlings as affected by toxic levels of aluminium. Ind. J. Plant Physiol. 7: 62-65.
Norris, E. R. and Mathles, J. C. 1953. Preparation, properties and crystallization of tuna pepsin. J. Biol. Chem. 204(2): 673-678.
Ockerman, H. W. 1991. Food Science Source Book. Van Nostrand Reinhold, New York.
Okada, Y. and Okada, M. 1998. Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 46: 401-406.
Olafsdottir, G., Martinsdottir, E., Oehlenschluger, J., Dalgaard, P., Jensen, B., Undeland, I., Mackie, I. M., Henehan, G., Nielsen, J. and Nilsen, H. 1997. Methods to evaluate fish freshness in research and industry. Trends Food Sci. Technol. 8: 258-265.
Orejana, F. M. and Liston, J. 1982. Agents of proteolysis and its inhibition in Patis (fish sauce) fermentation. J. Food Sci. 47: 198-203.
Orlova, T. A., Nelichik, N. N. and Fleider, K. A. 1979. Edible protein concentrate from fish raw material. Rybnoe Khozyaistvo 10: 59.
Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775.
Park, S. R. 1995. Study on the seasonal changes of proximate composition of striped jack (Caranx delicatissimus). Bull. Natl. Fish. Res. Dev. Agency (Korea). 50:157-177.
Philippe, R. and Philippe, D. 2004. The diversity of epithelial secreted mucins. Current Organic Chem. 8: 413-437.
Pihlanto, A. 2006. Antioxdative peptides derived from milk proteins. Int. Dairy J. 16: 1306-1314.
Qian, Z. J., Jung, W. K., Byun, H. G. and Kim, S. K. 2008a. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster (Crassostrea gigas) against free radical induced DNA damage. Bioresour. Technol. 99: 3365-3371.
Qian, Z. J., Jung, W. K. and Kim, S. K. 2008b. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin (Rana catesbeiana) Shaw. Bioresour. Technol. 99: 1690-1698.
Quaglia, G. B. and Orban, E. 1990. Influence of enzymatic hydrolysis on structure and emulsifying properties of sardine (Sardina pilchardus) protein hydrolysate. J. Food Sci. 55: 1571-1573.
Quinn, P., Boldyrev, A. and Formazuyk, V. 1992. Carnosine: Its properties, functions and potential therapeutic applications. Mol. Aspects Med. 13: 379-444.
Rajapakse, N., Mendis, E., Byun, H. G. and Kim. S. K. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16: 562-569.
Ramakrishan, M., Hultin, H. O. and Atallah, M. T. 1987. A comparison of dogfish and bovine chymotrypsins in relation to protein hydrolysis. J. Food Sci. 52: 1198-1202.
Ranathunga, S., Rajapakse, N. and Kim, S. K. 2006. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 222: 310-315.
Rebeca, B. D., Pena-Vera, M. T. and Diaz-castaneda, M. 1991. Production of fish protein hydrolysates with bacterial protease, yield and nutritional value. J. Food Sci. 56(2): 309-314.
Saiga, A., Tanabe, S. and Nishimura, T. 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 51: 3661-3667.
Saito, T., Arai, K. and Matsuyoshi, M. 1959. A new method for estimating the freshness of fish. Bull. Jap. Soc. Sci. Fish. 24: 749.
Sathivel, S., Bechtel, P. J., Babbitt, J., Smiley, S., Crapo, C. and Reppond, K. D. 2003. Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. J. Food Sci. 68: 2196-2200.
Shahidi, F., Han, X. O. and Synowiecki, J. 1995. Production and characteristics of protein hydrolysates from capelin. Food Chem. 53: 285-293
Shewan, J. M. and Jones, N. R. 1957. Chemical changes occurring in cod muscle during chill storage and their possible use a objective indices of quality. J. Sci. Food Agric. 8: 491-497.
Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.
Sikorski, Z. E. and Ruiter, A. 1994. Changes in proteins and nonprotein nitrogen compounds in crude fermented and dried seafood. In “Seafood Protein.” Zdzislaw et al. (Eds.), New York. pp.113-126.
Sikorski, Z. E., Kolakowska, A. and Burt, J. R. 1990. Post-harvest biochemical and microbial changes. In “Seafood: Resources, Nutritional Composition, and Preservation”, Sikorski, Z. E. (Ed), CRC Press, Inc. Boca Raton, Florida. pp. 55-75.
Simeonidou, S., Govaris, A. and Vareltzis, K. 1998. Quality assessment of seven Mediterranean fish during storage on ice. Food Res. Intern. 30: 479-484.
Skanderby, M. 1994. Protein hydrolysates: Their functionality and applications. Food Technol. Int. Eur. 10: 141-144.
Suetsuna, K. 2000. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Marine Biotechnol. 2: 5-10.
Suetsuna, K., Maekawa, K., Chen, J. R., Harada, K., Hamada, M. and Shin, S. U. 2004. Separation and identification of antioxidative peptides from peptic digest of fish scale collagen. J. Natl. Fish. Univ. 52(2): 57-62.
Sugiyama, K., Egawa, M., Onzuka, H. and Oba, K. 1991. Characteristics of sardine muscle hydrolysates prepared by various enzymic treatment. Bull. Jap. Soc. Sci. Fish. 57(3): 475-479.
Suyama, M. and Shimizu, T. 1982. Buffering capacity and taste of carnosine and its methylated compounds. Bull. Jap. Soc. Sci. Fish. 48: 89-95.
Suzuki, T., Hirano, T. and Shirai, T. 1990. Distribution of extractive nitrogenous constituents in white and dark muscles of fresh-water. Fish Comp. Biochem. Physiol. 96: 107-111.
Tasi, M. J. and Pan, B. C. 1988. Biochemical changes of grass shrimp (Penaeus monodon) during chilled storage. J. Fish. Soc. Taiwan. 15: 49-58.
Tatterson, I. N. 1982. Fish silage-preparation, properties and uses. Animal Feed Sci. Technol. 7: 153-159.
Tong, L. M., Sasaki, S., McClements, D. J. and Decker, E. A. 2000. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 48: 1473-1478.
Tsuda, T., Fujii, M., Watanabe, M., Nakakuki, H., Ohshima, K., Osawa, T. and Kawakishi, S. 1994. Antioxidative activity of red bean extract and its application to food. Nippon Shokuhin Kogyo Gakkaishi 41: 475-480.
Tsuge, N., Eikawa, Y., Nomura, Y., Yamamoto, M. and Sugisawa, K. 1991. Antioxidative activity of peptides prepared by enzymatic hydrolysis of egg-white albumin. Nippon Nogeikagaku Kaishi 65(11): 1635-1641.
Van Waarde, A. 1988. Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production. Comp. Biochem. Physiol. 91(2): 207-228.
Watabe, S., Kamal, M. and Hashimoto, K. 1991. Postmortem changes in ATP, creatine phosphate, and lactate in sardine muscle. J. Food Sci. 56: 151-153.
Watabe, S., Ushio, H., Iwamoto, M., Yamanaka, H. and Hashimoto, K. 1989. Temperature-dependency of rigor mortis of fish muscle; myofibrillar Mg2+-ATPase and Ca2+ uptake by sarcoplasmic reticulum. J. Food Sci. 54: 1107-1115.
Wayner, D. M., Burton, G. W., Ingold, K. U., Barclay, L. R. C. and Locke, S. J. 1987. The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochem. Biophys. Acta 924: 408-419.
Webster, J. D., Ledward, D. A. and Lawrie, R. A. 1982. Protein hydrolysates from meat industry by-products. Meat Sci. 7: 147-157.
Wendakoon, C. N. and Sakaguchi, M. 1992. Non-volatile amine production in mackerel muscle during growth of different bacterial species. J. Food Hyg. Soc. Jap. 33: 39-45.
Wright, C. E., Allen, J. A., Tallian, H. H. and Lin, Y. Y. 1986. Taurine: biological update. Ann. Rev. Biochem. 55: 427-453.
Wu, H. C., Chen, H. M. and Shiau, C. Y. 2003a. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Intl. 36: 949-957.
Wu, H. C., Shiau, C. Y., Chen, H. M. and Chiou, T. K. 2003b. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 11: 148-153.
Wu, H. C., Sun Pan, B., Chang, C. L. and Shiau, C. Y. 2005. Low-molecular-weight peptides as related to antioxidant properties of chicken essence. J. Food Drug Anal. 13: 176-183.
Yamaguchi, N. 1971. Studies on antioxidatives of amino compounds on fats and oils. Part ?. Oxidation of methionine during course of autoxidation of linoleic acid. Nippon Suisan Kogyo Gakkaishi 18: 313-318.
Yamaguchi, N., Yokoo, Y. and Fujimaki, M. 1979. Antioxidative activities of protein hydrolyzates. Nippon Shokuhin Kogyo Gakkaishi. 26(2): 65-70.
Yamanaka, H. and Shimada, R. 1996. Post-mortem biochemical changes in the muscle of Japanese spiny lobster during storage. Fish. Sci. 62: 821-824.
Yamaguchi, S., Yokoo, Y. and Fufimaki, M. 1975. Studies on antioxidative activities of amino compounds on fats and oils. Part Ⅲ. Antioxidative activities of soybean protein hydrolysates and synergistic effect of hydrolysate on tocopherol. Nippon Shokuhin Kogyo Gakkaishi 22(9): 431-435.
Yamashoji, S., Yoshida, H. and Kajimoto, G. 1977. Prooxidative effects of Cu2+-amino acid complexes on the autoxidation of linoleic acid. Agric. Biol. Chem. 41(10): 1947-1951.
Zhu, K., Zhou, H. and Qian, H. 2006. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Pro. Biochem. 41: 1296-1302.
中島宣郎、市川恆平、鐮田政喜、藤田榮一郎,1961。5’-????????食品化學的研究,食品中5’-??????????? (??2) 魚貝肉???食肉中5’-???????,農化,35: 803-808。
內山 均,1985。水產物??–????–???儲藏法。魚?低溫儲藏?品質評價法,96-105。
吳蕙君,1998。魚貝類抽出物抗氧化性之探討。國立臺灣海洋大學食品科學研究所碩士論文,基隆。
李思忠、陳星玉、陳小平,1994。世界魚類。水產出版社,基隆市,p. 28-29。
李家璞,1996。鹽鯖品質風味改善之研究。國立臺灣海洋大學水產食品科學系碩士學位論文,基隆。
沈世傑,1993。臺灣魚類誌。國立臺灣大學動物系,臺北市。
林玫欣,1999。鯖魚肉與內臟水解物之抗氧化性研究。國立臺灣海洋大學食品科學系碩士論文,基隆。
邵廣昭、陳麗淑,2004。魚類入門。遠流出版社,臺北市,p. 29, 34, 80-83。
邱思魁、林君霏、蕭泉源,1996。養殖文蛤儲藏中的鮮度品質變化。中國營養學會雜誌,21: 95-109。
邱思魁、游昭玲、蕭泉源,1995。虱目魚貯藏中鮮度及呈味成分之變化。食品科學,22: 46-58。
姜淑繡,2001。省產蘿蔔之抗氧化性研究。大葉大學食品工程學系碩士學位論文,彰化。
陳秀蓮。1993。常用調味料中的蛋白質水解液。食品工業。25(6): 33-43。
郭建賢,1992。臺灣的盲鰻漁業。中國水產月刊,473: 9-14。
須山三千三、鴻巢章二,1987。水產食品學。恆星社厚生閣。東京。
馮貢國、陳聰松、王文亮,1990。以揮發性鹽基態氮、K 值及pH 作為養殖九孔鮮度指標可行性之探討。臺灣水產試驗所試驗報告, 49: 51-60。
廖譓嘉,2008。盲鰻生化學組成特性及其抗氧化活性之探討。國立臺灣海洋大學食品科學研究所碩士論文,基隆。
衛生署,1998。冷凍食品類衛生標準。衛署食字第87032655 號公告。
衛生署,2007。生食用食品類衛生標準。衛署食字第0960408889號公告。
鄭聰旭,1993。食品衛生標準之訂定。食品工業。25 (5):28-35。
錢阜甯,1994。魚肉蛋白之酵素水解。食品工業。26 (8): 27-35。
饒家麟、柯文慶,2001。鮪魚蒸煮液蛋白質水解物之抗氧化特性。臺灣農化與食品科學,39 (5): 363-369。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔