(3.80.6.131) 您好!臺灣時間:2021/05/14 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:石家齊
論文名稱:以飼料中有機態銅探討石斑魚稚魚銅之需求量
論文名稱(外文):Dietary copper requirements of juvenile grouper, Epinephelus malabaricus, determined as organic copper form
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:胜?螯合銅
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
銅為魚類必需之微量礦物質,具有機型態與無機型態兩種化學型態。以無機態銅為來源定量石斑魚稚魚(Epinephelus malabaricus)銅之最適需求量已知為4-6 mg Cu/kg diet。本研究之目的為確立石斑魚稚魚對有機態銅之利用並以其建立銅之需求量。基礎飼料中分別添加有機態銅(Cu-peptide) 0、1、2、3、4、8、12 mg Cu/kg diet,實際分析值分別為0.19、1.81、2.55、3.43、4.37、8.99、12.81 mg Cu/kg diet,共七個實驗組,分別餵予平均初重21.60 ± 0.08 g之石斑魚稚魚,每組三重複,於密閉循環海水系統中飼養八週。石斑魚之增重率以餵食2.55 mg Cu/kg diet組顯著(p<0.05)最高,餵食3.43 mg Cu/kg diet組次之,而以餵食0.19、8.99及12.81 mg Cu/kg diet三組最低。肝臟銅鋅超氧歧化?活性以餵食2.55 mg Cu/kg diet組最高,餵食3.43 mg Cu/kg diet組次之,餵食8.99 mg Cu/kg diet組再次之,後為餵食1.81及12.81 mg Cu/kg diet二組,以餵食0.19 mg Cu/kg diet組最低。肝臟TBARS值以餵食12.81 mg Cu/kg diet組顯著最高,其次為餵食0.19及4.37 mg Cu/kg diet二組,以餵食2.55及3.43 mg Cu/kg diet二組為最低。頭腎巨噬細胞超氧陰離子產率以餵食1.81及≧3.43 mg Cu/kg diet之各組顯著高於餵食0.19 mg Cu/kg diet組。以魚體增重率、肝臟銅鋅超氧歧化?活性、肝臟TBARS值經拐點迴歸分析及以全魚體銅之保留量經線性迴歸分析,估得石斑魚稚魚銅之最適需求量為2.19-3.34 mg Cu/kg diet。顯示石斑魚稚魚對有機態銅之利用性優於對無機態銅之利用。
目 錄
中文摘要..................... I
英文摘要..................... II
文獻整理..................... 1
前言.......................14
材料方法.....................16
結果.......................31
討論.......................49
結論.......................61
參考文獻.....................62
表目錄
表一、魚類對銅之需求量..................7
表二、過量銅對魚類之影響.................8
表三、實驗基礎飼料組成..................17
表四、實驗飼料之ㄧ般成分分析...............19
表五、石斑魚稚魚餵食不同銅含量飼料八週後之增重百分率、
飼料效率及存活率..................32
表六、石斑魚稚魚餵食不同銅含量飼料八週後之蛋白質效率及
肝體比.......................33
表七、石斑魚稚魚餵食不同銅含量飼料八週後之體組成.....34
表八、石斑魚稚魚餵食不同銅含量飼料八週後之紅血球計數、
血比容與血紅素濃度.................35
表九、石斑魚稚魚餵食不同銅含量飼料八週後之平均紅血球體
積、平均紅血球血紅素含量與平均紅血球血紅素濃度...37
表十、石斑魚稚魚餵食不同銅含量飼料八週後之魚體、肌肉及
肝臟中銅濃度....................38
表十一、石斑魚稚魚餵食不同銅含量飼料八週後之巨噬細胞超
氧陰離子產率...................39
表十二、石斑魚稚魚餵食不同銅含量飼料八週後之肝臟總超氧
歧化?活性、銅鋅超氧歧化?活性及錳超氧歧化?活
性........................40
表十三、石斑魚稚魚餵食不同銅含量飼料八週後之肌肉及肝臟
TBARS值....................42
表十四、石斑魚稚魚餵食不同銅含量飼料八週後之全魚體銅保
留量.......................47
圖目錄
圖一、抗氧化酵素的作用方式................3
圖二、人類體內銅之生化及代謝作用.............4
圖三、生物體內礦物質之消化、吸收及排泄..........5
圖四、飼料中實際銅含量對石斑魚稚魚增重百分率之影響....43
圖五、飼料中實際銅含量對石斑魚稚魚肝臟銅鋅超氧歧化
?活性之影響....................44
圖六、飼料中實際銅含量對石斑魚稚魚肝臟TBARS值之
   影響........................46
圖七、飼料中實際銅含量對石斑魚稚魚全魚體銅保留量之
   影響........................48
Abdel-Mageed, A.B., Oehme, F.W., 1990. A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: II. Copper. Vet. Hum. Toxicol. 32, 230-234.
Abuja, P.M., Albertini, R., 2001. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin. Chim. Acta 306, 1-17.
Anderson, D.P., 1992. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annu. Rev. Fish Dis. 2, 281-307.
Anderson, D.P., Siwicki, A.K., 1993. Basic hematology and serology for fish health programs. In: Shariff, M., Arthur, J.R., Subasinghe, R.P. (Eds.), Diseases in Asian Aquaculture II. Fish Health Section, Asian Fisheries Society, Manila, pp. 185-202.
A.O.A.C. International, 1995. Official Methods of Analysis, 16th edn. Association of Official Analytical Chemists International, Arlington, VA, USA.
Aoyagi, S., Baker, D.H., 1994. Copper-amino acid complexes are partially protected against inhibitory effects of L-cysteine and L-ascorbic acid on copper absorption in chicks. J. Nutr. 124, 388-395.
Ashmead, H.D., Graff, D.J., Ashmead, H.H., 1985. In: Intestinal Absorption of Metal Ions and Chelates. CC Thomas, Springfield, IL.
Ashmead, H.D., 1992. Factors which affect the intestinal absorption of minerals. In: Ashmead, H.D. (Ed.), The roles of amino acid chelates in animal nutrition. Noyes Publications, Park Ridge, NJ, pp. 221-246.
Baker, R.T.M., Handy, R.D., Davies, S.J., Snook, J.C., 1998. Chronic dietary exposure to copper affects growth, tissue lipid peroxidation, and metal composition of the grey mullet, Chelon labrosus. Mar. Environ. Res. 45, 357-365.
Berntssen, M.H.G., Hylland, K., Wendelaar Bonga, S.E., Maage, A., 1999a. Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquat. Toxicol. 46, 87-99.
Berntssen, M.H.G., Hylland, K., Wendelaar Bonga, S.E., Maage, A., 1999b. Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (salmo salar L.) fry. Aquacultrure 174, 167-181.
Berntssen, M.H.G., Lundebye, A.K., Hamre, K., 2000. Tissue lipid peroxidative responses in Atlantic salmon (salmo salar L.) parr fed high levels of dietary copper and cadmium. Fish Physiol. Biochem. 23, 35-48.
Botash, A.S., Nasca, J., Dubowy, R., Weinberger, H.L., Oliphant, M., 1992. Zinc induced copper deficiency in an infant. Am. J. Dis. Chid. 146, 709-711.
Bowland, A.E., 1990. The Ecology and Conservation of the Blue Duiker and Red Duiker in Natal. PhD dissertation, University of Natal, Pietermaritzburg.
Boyne, R., Arthur, J.R., 1981. Effects of selenium and copper deficiency on neutrophil function in cattle. J. Comp. Pathol. 91, 271-276.
Boyne, R., Arthur, J.R., 1986. Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle. Res. Vet. Sci. 41, 417-419.
Boyne, R., Arthur, J.R., 1990. Anaemia and changes in erythrocyte morphology associated with copper and selenium deficiencies and dietary restriction in rats. Res. Vet. Sci. 49, 15-156.
Bremner, I., 1998. Manifestations of copper excess. Am. J. Clin. Nutr. 67, 1069-1073.
Briganti, S., Camera, E., Picardo, M., 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110.
Brix, K.V., DeForest, D.K., Adams, W.J., 2001. Assessing acute and chronic copper risks to freshwater aquatic life using species sensitivity distributions for different taxonomic groups. Envir. Toxicol. Chem. 20, 1846-1856.
Brown, T.F., Zeringue, L.K., 1994. Laboratory evaluations of solubility and structural integrity of complexed and chelated trace mineral supplements. J. Dairy Sci. 77, 181-189.
Burk, R.F., 1976. Selenium in man. In: A.S. Prasad (Ed.), Trace Elements in Human Health and Disease. Academic Press, London, pp. 105-134.
Butler, E.J., 1971. Physiology and Biochemistry of Domestic Fowl. In: Bell, D.J., Freeman, B.M. (Eds.), London Academic Press, London, UK, 2, p. 933
Carr, T.P., Lei, K.Y., 1989. In vivo apoprotein catabolism of high density lipoproteins in copper-deficient, hypercholesterolemia rats. Proc. Soc. Exp. Biol. Med. 191, 370-376.
Cecconi, I., Scaloni, A., Rastelli, G., Moroni, M., Vilardo, P.G., Costantino, L., Cappiello, M., Garland, D., Carper, D., Petrash, J.M., Del Corso, A., Mura, U., 2002. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism. J. Biol. Chem. 277, 42017-42027.
Cerone, S.I., Sansinanea, A.S., Streitenberger, S.A., Garcia, M.C., Auza, N.J., 1998. The effect of copper deficiency on the peripheral blood cells of cattle. Vet. Res. Commun. 22, 47-57.
Cheeseman, K.H., Slater, T.F., 1993. An introduction to free radical biochemistry. Br. Med. Bull. 49, 481-493.
Cheng, W., Wang, C.H., 2001. The susceptibility of the giant freshwater prawn Macrobrachium rosenbergii to Lactococcus garvieae and its resistance under copper sulfate stress. Dis. Aquat. Org. 47, 133-144.
Cheng, A.C., Wu, J.D., Yang, S.D., Liou, C.H., 2005. Dietary phosphorus requirement of juvenile Malabar grouper (Epinephelus malabaricus). J. Fish. Soc. Taiwan 32, 41-52.
Coffey, R.D., Cromwell, G.L., Monegue, H.J., 1994. Efficacy of a copper-lysine complex as a growth promotant for weanling pigs. J. Anim. Sci. 72, 2880-2886.
Dhanapakiam, P., Ramasamy, V.K., 2001. Toxic effects of copper and zinc mixtures on some haematological and biochemical parameters in common carp, Cyprinus carpio (Linn). J. Environ. Biol. 22, 105-111.
Dick, A.T., 1954. Preliminary observations on the effect of high intakes of molybdenum and inorganic sulfate on blood copper and on fleece character in crossbred sheep. Aust. Vet. J. 30, 196-202.
Disilvestro, R.A., 1989. Copper activation of Superoxide dismutase in rat erythrocytes. Arch. Biochem. Biophys. 274, 298-303.
Doong, G., Keen, C.L., Rogers, Q.R., Morris, J.G., Rucker, R.B., 1983. Selected features of copper metabolism in the cat. J. Nutr. 113, 1963-1971.
Du, Z., Hemken, R.W., Harmon, R.J., 1996. Copper Metabolism of Holstein and Jersey Cows and Heifers Fed Diets High in Cupric Sulfate or Copper Proteinate. J. Dairy Sci. 79, 1873-1880.
Eckert, G.E., Greene, L.W., Carstens, G.E., Ramsey, W.S., 1999. Copper status of ewes fed increasing amounts of copper from copper sulfate or copper proteinate. J. Anim. Sci. 77, 244-249.
FAO Yearbooks of Fisheries Satistics, 2009. Food Agriculture Organization of the United Nations, Rome.
Fattman, C.L., Schaefer, L.M., Oury, T.D., 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35, 236-256.
Flohe, L., Otting, F., 1984. Superoxide dismutase assays. Meth. Enzymol. 105, 93-104.
Fridovich, I., 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1-11.
Fridovick, I., 1989. Superoxide Dismutases : an adaptation to a paramagnetic gas. J. Biol. Chem. 264, 7761-7764.
Gaetke, L.M., Chow, C.K., 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147-163.
Galhardi, C.M., Diniz, Y.S., Faine, L.A., Rodrigues, H.G., Burneiko, R.C.M., Ribas, B.O., Novelli, E.L.B., 2004. Toxicity of copper intake: lipid profile, oxidative stress and susceptibility to renal dysfunction. Food Chem. Toxicol. 42, 2053-2060.
Gatlin III, D.M., Wilson, R., 1986. Dietary copper requirement of fingerling channel catfish. Aquaculture 54, 277-285.
Gengelbach, G.P., Ward, J.D., Spears, J.W., Brown, T.T.J., 1997. Effects of copper deficiency and copper deficiency coupled with high dietary iron or molybdenum on phagocytic cell function and response of calves to a respiratory disease challenge. J. Anim. Sci. 75, 1112-1118.
Guclu, B.K., Kara, K., Beyaz, L., Uyanik, F., Eren, M., Atasever, A., 2008. Influence of dietary copper proteinate on performance, selected biochemical parameters, lipid peroxidation, liver, and egg copper content in laying hens. Biol. Trace Elem. Res. 125, 160-169.
Guo, R., Henry, P.R., Holwerda, R.A., Cao, J., Littell, R.C., Miles, R.D., Ammerman, C.B., 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry. J. Anim. Sci. 79, 1132-1141.
Harris, E.D., 1992. Copper as a cofactor and regulator of copper-zinc superoxide dismutase. J. Nutr. 122, 636-640.
Harris, E.D., 1993. The transport of copper. Prog. Clin. Biol. Res. 380, 163-179.
Hart, E.B., Steenbock, J., Waddell, J., Elvehjem, C.A., 1928. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J. Biol. Chem. 77, 797-812.
Hellman, N.E., Gitlin, J.D., 2002. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439-458.
Hill, C.H., Matrone, G., 1961. Studies on copper and iron deficiencies in growing chickens. J. Nutr., 73, 425-431.
Hill, R., Williams, H.L., 1965. The effects on intensively reared lambs of diets containing excess copper. Vet. Rec. 77, 1043-1045.
Hilton, J.W., 1989. The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 79, 223-244.
James, G.P., Joseph, R.P., 2004. Abnormal motor function persists following recovery from perinatal copper deficiency in rats. J. Nutr. 134, 1984-1988.
Julshamn, K., Andersen, K.J., Ringdal, O., Brenna, J., 1988. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout (salmo gairdneri). Aquaculture 73, 143-155.
Kamunde, C., Grosell, M., Higgs, D., Wood, C.M., 2002. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J. Exp. Biol. 205, 279-290.
Kaya, A., Alt?ner, A., Ozp?nar, A., 2006. Effect of Copper Deficiency on Blood Lipid Profile and Haematological Parameters in Broilers. J. Vet. Med. A Physiol. Pathol. Clin. Med. 53, 399-404.
Kegley, E.B., Spears, J.W., 1994. Bioavailability of feed-grade copper sources (oxide, sulfate, or lysine) in growing cattle. J. Anim. Sci. 72, 2728-2734.
Kim, S.G., Kang, J.C., 2004. Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish, Sebastes schlegeli. Mar. Environ. Res. 58, 65-82.
Knox, D., Cowey, C.B., Adron, J.W., 1982. Effect of dietary copper and copper: zinc ratio on rainbow trout, Salmo gairdneri. Aquaculture 27, 111-119.
Knox, D., Cowey, C.B., Adron, J.W., 1984. Effect of dietary zinc intake upon copper metabolism in rainbow trout (salmo gairdneri). Aquaculture 40, 199-207.
Koller, L.D., Mulhern, S.A., Frankel, N.C., Steven, M.G., Williams, J.R., 1987. Immune dysfunction in rats fed a diet deficient in copper. Am. J. Clin. Nutr. 45, 997-1006.
Lall, S.P., Bishop, F.J., 1977. Studies on mineral and protein utilization by Atlantic salmon (Salmo salar) grown in seawater. Fish. Mar. Serv. Tech. Rep. 688, 1-16.
Lanno, R.P., Slinger, S.J., Hilton, J.W., 1985a. Maximium tolerable and toxicity levels of dietary copper in rainbow trout (salmo gairdeneri Richardson) Aquaculture 49, 257-268.
Lanno, R.P., Slinger, S.J., Hilton, J.W., 1985b. Effect of ascorbic acid on dietary copper toxicity in rainbow trout (Salmo gairdneri Richardson). Aquaculture 49, 269-287.
Ledoux, D.R., Pott, E.B., Henry, P.R., Ammerman, C.B., Merritt, A.M., Madison, J.B., 1995. Estimation of the relative bioavailability of inorganic copper sources for sheep. Nutr. Res. 15, 1803-1813.
Lemaire-Gony, S., Lemaire, P., Pulsford, A.L., 1995. Effects of cadium and benzo (a) pyrene on the immune system, gill ATPase and EROD activity of European sea bass, Dicentrarchus labrax. Aquat. Toxicol. 31, 197-313.
Lin, Y.H., Shiau, S.Y., 2003. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 225, 243-250.
Lin, M.F., Shiau, S.Y., 2004. Requirements of vitamin C (L-ascorbyl-2- monophosphate-Mg and L-ascorbyl-2-monophosphate-Na) and its effects on immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 10, 327-333.
Lin, M.F., Shiau, S.Y., 2005a. Dietary L-ascorbic acid affects growth, non-specific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244, 215-221.
Lin, M.F., Shiau, S.Y., 2005b. Requirements of vitamin C (L-ascorby1-2-sulfate and L-ascorby1-2-polyphosphate) and its effects on immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 11, 183-189.
Lin, Y.H., Shiau, S.Y., 2005c. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250, 356-363.
Lin, Y.H., Shiau, S.Y., 2007. Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 13, 137-144.
Lin, Y.H., Shie, Y.Y., Shiau, S.Y., 2008a. Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 274, 161-165.
Lin, Y.H., Lin, S.M., Shiau, S.Y., 2008b. Dietary manganese requirements of juvenile tilapia, Oreochromis niloticus × O. aureus. Aquaculture 284, 207-210.
Lin, Y.H., Wang, H., Shiau, S.Y., 2009. Dietary nucleotide supplementation enhances growth and immune responses of grouper, Epinephelus malabaricus. Aquacult. Nutr. 15, 117-122.
Linder, M.C., Hazegh-Azam, M., 1996. Copper biochemistry and molecular biology, Am. J. Clin. Nutr. 63, 797-811.
Livingstone, D.R., Lemaire, P., Matthews, A., Peters, L.D., Porte, C., Fitzpatrick, P.J., Forlin, L., Nasci, C., Fossato, V., Wootton, N., Goldfarb, P., 1992. Assessment of the impact of organic pollutants on goby (Zosterisessor ophiocephalus) and mussel (Mytilus galloprovincialis) from the Venice Lagoon, Italy: Biochemical studies. Mar. Environ. Res. 39, 235-340.
Lorentzen, M., Maage, A., Julshamn, K., 1994. Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar). Aquaculture 121, 359-367.
Lorentzen, M., Maage, A., Julshamn, K., 1998. Supplementing copper to a fish meal based diet fed to Atlantic salmon parr affects liver copper and selsnium concentrations. Aquacult. Nutr. 4, 67-72.
Lukasewycz, O.A., Prohaska, J.R., 1990. The immune response in copper deficiency. Ann. N.Y. Acad. Sci. 587, 147-159.
Lundebye, A.K., Berntssen, M.H.G., Wendelaar Bonga, S.E., Maage, A. 1999. Biochemical and physiological responses in Atlantic salmon (salmo salar) following dietary exposure to copper and cadmium. Mar. Pollut. Bull. 39, 137-144.
Luza, S.C., Speisky, H.C., 1996. Liver copper storage and transport during development: implications for cytotoxicity. Am. J. Clin. Nutr. 63, 812-820.
Lynch, S.M., Frei, B., Morrow, J.D., Roberts, L.J., Xu, A., Jackson, T., Reyna, R., Klevay, L.M., Vita, J.A., Keaney, J.F., 1997. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler. Thromb. Vasc. Biol. 17, 2975-2981.
Mackie, A.M., Mitchell, A.I., 1985. Identification of gustatory feeding stimulants for fish-applications in aquaculature. In: Cowey, C.B., Mackie, A.M., Bell, J.B., (Eds.), Nutrition and Feeding in Fish. Academic Press, London, pp. 177-189.
Mate, M.M., Perez-Gomez, C., 1999. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci. 4, 339-345.
Miller, P.A., Lanno, R.P., McMaster, M.E., Dixon, D.G., 1993. Relative contribution of dietary and waterborne copper to tissue copper burdens and waterborne copper uptake in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 50, 1683-1689.
Mondal, M.K., Das, T.K., Biswas, P., Samanta, C.C., Bairagi, B., 2007a. Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Anim. Feed Sci. Technol. 139, 212-233.
Mondal, M.K., Biswas, P., Roy, B., Mazumdar, D., 2007b. Effect of copper sources and levels on serum lipid profiles in Black Bengal (Capra hircus) kids. Small Rumin. Res. 67, 28-35.
Murai, T., Andrews, J.W., Smith, R.G., 1981. Effects of dietary copper on channel fish. Aquaculture 22, 353-357.
Nerya, O., Musa, R., Khatib, S., Tamir, S., Vaya, J., 2004. Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65, 1389-1395.
Ogino, C., Yang, G., 1980. Requirements of carp and rainbow trout for dietary manganese and copper. Bull. Jpn. Soc. Fish. 46, 455-458.
Pelgrom, S.M., Lamers, G.J., Lock, L.P.M., Balm, R.A.C., Wendelaar, P.H.M., Bonga, S.E., 1995, Interactions between copper and cadmium modify metal organ distribution in mature tilapia, Oreochromis mossambicus, Environ. Pollut. 90, 415-423.
Pick, E., Mizel, D., 1981. Rapid microassay for the measurement of superoxide and hydrogen peroxide production by macrophage in culture using an automatic enzyme immunoassay reader. J. Immunol. Methods 46, 211-216.
Rayssiguier, Y., Gueux, E., Bussiere, L., Mazur, A., 1993. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J. Nutr. 123, 1343-1348.
Rossmini, R.M., Perlo, F., Perez-alvarez, J.A., Pagan-morenno, M.J., Gaga-gago, A., Lopez-santove?a, F., Aranda-catala, V., 1996. TBA test by an extractive method applied to pate. Meat Sci. 42, 103-110.
Sanchez-Ferrer, A., Rodriguez-Lopez, J.N., Garcia-Canovas, F., Garcia- Carmona, F., 1995. Tyrosinase: A review of its mechanism. Biochim. Biophys. Acta 1247, 1-11.
Sandatead, H.H., 1982. Copper bioavailability and requirements. Am. J. Clin. Nutr. 35, 809-814.
Sayer, M.D., Reader, J.R.P., Morris, R., 1992. Embryonic and larval development of larval browntrout, Salmo trutta L.: Exposure to aluminium, copper, lead or zinc in soft acid water. J. Fish Biol. 38, 431-455.
Secombes, C.J., 1996. The non-specific immune system : cellular defenses. In: Iwama, G., Nakanishi, T. (Eds.), The fish immune system: Organism, Pathogen, and Environment. Acdemic Press, San Diego, California, USA, pp. 63-103.
Senthilkumar, P., Nagalakshmi, D., Ramana, R.Y., Sudhakar, K., 2009. Effect of different level and source of copper supplementation on immune response and copper dependent enzyme activity in lambs. Trop. Anim. Health Prod. 41, 645-653.
Shariff, M., Jayawardena, P.A.H.L., Yusoff, F.M., Subasinghe, R., 2001. Immunological parameters of Javanese carp, Puntius gonionotus (Bleeker) exposed to copper and challenged with Aeromonas hydrophila. Fish Shellfish Immunol. 11, 281-291.
Shears, M.A., Fletcher, G.L., 1983. Regulation of Zn2+ uptake from the gastrointestinal tract of a marine teleost, the winter flounder (Pseudopleuronectes americanus). Can. J. Fish. Aquat. Sci. 40, 197-205.
Shiau, S.Y., Hsieh, J.F., 2001. Quantifying the dietary potassium requirement of juvenile hybrid tilapia, Oreochromis niloticus �e O. aureus. Br. J. Nutr. 85, 213-218.
Shiau, S.Y., Lin, Y.H., 2002. Utilization of glucose and starch by grouper, Epinephelus malabaricus, at 23℃. Fish. Sci. 68, 991-995.
Shiau, S.Y., Ning, Y.C., 2003. Estimating of dietary copper requirements for juvenile tilapia, Oreochromis niloticus �e O.aureus. Anim. Sci. 77, 287-292.
Shiau, S.Y., Lu, L.S., 2004. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus �e O.aureus.) reared in fresh water and seawater. Br. J. Nutr. 91, 585-590.
Simpson, C.F., Harms, R.H., Shirley, R.L., 1963. Blood changes in turkeys associated with a copper deficiency. Proc. Soc. Exp. Biol. Med. 113, 661-65.
Simpson, C.F., Harms, R.H., 1964. Pathology of the aorta of chicks fed a copper-deficient diet. Exp. Mol. Pathol. 3, 390-400.
Stabel, J.R., Spears, J.W., Brown, T.T.J., 1993. Effect of copper deficiency on tissue, blood characteristics, and immune function of calves challenged with infectious bovine rhinotracheitis virus and Pasteurella hemolytica. J. Anim. Sci. 71, 1247-1255.
Stolen, T.C., Fletcher, D.P., Anderson, B.S., Roberson, B.S., van Muiswinkel, W.B., 1990. Techniques in Fish Immunology. Fair Haven, NJ, USA, pp. 11-12.
Sunde, R.A., 1984. The biochemistry of selenoproteins. J. Am. Oil Chem. Soc. 61, 1891-1990.
Turnlund, J.R., 1991. Bioavailability of dietary minerals to humans: the stable isotope approach. Crit. Rev. Food Sci. Nutr. 30, 387-396.
Turnlund, J.R., Scott, K.C., Peiffer, G.L., Jang, A.M., Keen, C.L., Sakanashi, T.M., 1997. Copper ststus of young men consuming a low copper diet. Am. J. Clin. Nutri. 65, 72-78.
Turnlund, J.R., 1998. Turnlund, human whole-body copper metabolism. Am. J. Clin. Nutr. 67, 960-964.
Turnlund, J.R., Keyes, W.R., Peiffer, G.L., Scott, K.C., 1998. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am. J. Clin. Nutr. 67, 1219-1225.
Uauy, R., Olivares, M., Gonzalez, M., 1998. Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952-959.
Uchiyama, M., Mihara, M., 1978. Determination of malondehyde precursor in tissue by thiobarbituric acid test. Anal. Biochem. 86, 271-278.
Uriu-Adams, J.Y., Keen, C.L., 2005. Copper, oxidative stress, and human health. Mol. Aspects Med. 26, 268-298.
Wapnir, R.A., Balkman, C., 1990. Intestinal absorption of copper : effect of amino acids. Nutr. Res. 10, 589-95.
Ward, J.D., Spears, J.W., Kegley, E.B., 1996. Bioavailability of copper proteinate and copper carbonate relative to copper sulfate in cattle. J. Dairy Sci. 79, 127-132.
Watanabe, T., Kiron, V., Satoh, S., 1997. Trace minerals in fish nutrition. Aquaculture 151, 185-207.
Wilson, R.P., El Naggar, G., 1992. Potassium requirement of fingerling channel catfish, Ictalurus puntatus. Aquaculture 108, 169-175.
Wu, F.C., Ting, Y.Y., Chen, H.Y., 2002. Docosahexaenoic acid was superior to eicosapentaenoic acid as the essential fatty acid for the growth of the grouper Epinephelus malabaricus. J. Nutr. 132, 72-79.
Wu, L.C., Chen, Y.C., Ho, J.A., Yang, C.S., 2003. Inhibitory effect of red koji extracts on mushroom tyrosinase. J. Agric. Food Chem. 51, 4240-4246.
Ye, C.X., Liu, Y.J., Tian, L.X., Mai, K.S., Du, Z.U., Yang, H.J., Niu, J., 2006. Effect of dietary calcium and phosphorus on growth, feed efficiency, mineral content and body composition of juvenile grouper, Epinephelus coioides. Aquaculture 255, 263-271.
Ye, C.X., Liu, Y.J., Mai, K.S., Tian, L.X., Yang, H.J., Niu, J., Huang, J.W., 2007. Effect of dietary iron supplement on growth, haematilogy and microelements of juvenile grouper, Epinephelus coioides. Aquacult. Nutr. 13, 471-477.
Ye, C.X., Tian, L.X., Tang, H.J., Liang, J.J., Niu, J., Liu, Y.J., 2009. Growth performance and tissue mineral content of juvenile grouper (Epinephelus coioides) fed diets supplemented with various levels of manganese. Aquacult. Nutr. 10.1111/j.1365-2095.2008.00628.x
行政院農業委員會漁業署,2008。中華民國台灣地區漁業年報民國96年版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔