跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:辜敏芳
研究生(外文):Min-Fang Ku
論文名稱:紅豆與黑豆水浸泡液對第二型糖尿病大鼠糖代謝與脂質代謝之影響
論文名稱(外文):Effects of azuki bean and black soybean infusion on glucose metabolism and lipid metabolism in type 2 diabetic rats
指導教授:江孟燦江孟燦引用關係邱思魁邱思魁引用關係
指導教授(外文):Meng-Tsan ChiangTze-Kuei Chiou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:黑豆紅豆糖尿病糖代謝脂質代謝
外文關鍵詞:black soybeanazuki beandiabeticsglucose metabolismlipid metabolism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:675
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究目的是探討黑豆和紅豆水浸泡液對於streptozotocin (STZ) 誘發之糖尿病大白鼠血脂與血糖濃度的影響。以 40 隻雄性 SD 大白鼠為實驗對象,利用皮下注射 nicotinamide (230 mg/kg) 及 STZ (65 mg/kg) 之方式使大白鼠糖與脂質代謝異常,並將代謝異常與正常大白鼠隨機分成四組,分別為 (1) 正常組 (2) 糖尿病控制組 (3) 糖尿病黑豆水組 (4) 糖尿病紅豆水組。實驗共進行 11 週,飼養期間採自由飲水、攝食。實驗結果顯示飲用黑豆水紅豆水均可下降糖尿病大白鼠空腹血糖,總膽固醇及三酸甘油酯濃度 (P < 0.05)。在口服葡萄糖耐受性實驗中,紅豆水於第 4 週時明顯改善耐糖能,在第9 週時,紅豆與黑豆水兩組皆能改善耐糖能。分析肝臟醣代謝酵素,結果顯示黑豆水能提升六碳醣激? (hexokinase) 之活性及肝醣含量(P < 0.05),紅豆水能降低葡萄糖六磷酸? (glucose-6-phosphatase) 活性 (P < 0.05)。在小腸雙醣酵素活性方面,紅豆水浸泡液可顯著降低 lactase 和 maltase 活性 (P < 0.05) 在血漿脂蛋白膽固醇 (Lipoprotein-c) 方面,兩種浸泡液均能明顯下降 VLDL + LDL-C (P < 0.05)。此外,糖尿病大白鼠飲用黑豆水後有較低的游離脂肪酸含量 (P < 0.05)。在肝中脂質含量,飲用黑豆水的組別有較低的三酸甘油酯含量 (P < 0.05)。在抗氧化相關物質方面,黑豆水會明顯降低血漿中硫巴比妥酸反應物質 (thiobarbituric acid reactive substances, TBARS) 而飲用紅豆水的組別則是可降低肝臟中的TBARS 值 (P < 0.05)。值得注意的是黑豆水能顯著提升G6P Deh 、 GPx 活性及 GSH/GSSG 比值 (P < 0.05)。綜合上述結果推測,紅豆水與黑豆水可能都具有調節糖尿病大白鼠糖代謝與脂質代謝的功能。
The aims of this study are to investigate the effects of black soy bean or azuki bean infusion on glucose and lipid metabolism in streptozotocin–nicotinamide induced diabetic rats. Forty male Sprague -Dawley (SD) rats were randomly divided into four groups, rats drink water (normal), diabetic rats drink water (DM), diabetic rats drink black soybean infusion (DM + BI), diabetic rats drink azuki bean infusion (DM + AI) for 11 weeks. The results demonstrated that both DM + AI and DM + BI groups could lower the level of glucose, triglyceride and total cholesterol in plasma. In the aspect of carbonhydrate metabolism, DM + AI group could improve glucose tolerance at foruth week and DM + BI group showed the same effect at ninth week. To investigate glucose related metabolism enzyme in liver, hexokinase activity of DM + BI group would be reduced and the glucose-6-phosphatase activity of DM + AI group would be increased. Besides, the DM + AI group could reduce the activity of intestinal lactase and maltase. In the aspect of lipid metabolism, both DM + AI and DM + BI groups could decrease the level of VLDL + LDL- Cholesterol in plasma. Furthermore, DM + BI group also reduced free fatty acid level. On the other hand, DM + AI could decrease the value of TBARS in liver and DM + BI group could decrease the value of TBARS in plasma. In the aspect of oxidative stress, DM + BI group could increase activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and the GSH/GSSG ratio. According to above- mentioned results, both black soybean and azuki bean infusion had potency to regulate glucose and lipid metabolism in diabetic rats.
摘要 I
Abstract II
目錄 III
表目錄 VI
壹、研究背景與目的 1
貳、文獻整理 3
一、糖尿病 3
1. 糖尿病的簡介 3
2. 糖尿病的診斷 3
3. 糖尿病的分類 4
4. 糖尿病的併發症 5
5. 氧化壓力與糖尿病及其併發症之關係 5
(1) 自由基 6
(2) 氧化壓力 6
(3) 抗氧化系統 9
(4) 第二型糖尿病體內氧化傷害之情形 9
6. STZ 合併 nicotinamide 誘發第二型糖尿病動物模式 11
(1) streptozotocin (STZ) 致糖尿病的機制 12
(2) Nicotinamide (NA) 12
二、豆類簡介 13
1. 紅豆 13
2. 黑豆 13
3. 生理活性 14
(1) 紅豆的生理活性 14
(2) 黑豆的生理活性 15
1. 對糖代謝的影響 17
2. 對脂質代謝的影響 18
參、研究內容 18
一、實驗流程 18
二、實驗材料 21
肆、實驗方法 24
一、豆類浸泡液 24
1. 豆類浸泡液的製備 24
2. 成分分析 24
3. 抗氧化活性測定 25
4. 活性成分分析 26
二、 動物實驗 28
1. 動物誘導及分組 28
2. 動物飼養及樣品採集 28
3. 動物樣品分析 29
伍、統計分析 41
陸、結果 42
一、豆類水浸泡液抗氧化活性試驗 42
二、紅豆與黑豆水成分分析 42
三、實驗期間大白鼠體重、攝食量、飲水量與排尿量變化 43
四、組織臟器重量變化 43
五、葡萄糖耐糖測試結果 44
六、血漿生化指標的濃度 44
七、肝臟脂質含量變化 46
八、糞便脂質含量變化 46
九、肝臟糖代謝酵素及肝醣變化 47
十、肝臟抗氧化相關物質、抗氧化酵素及TBARS含量變化 47
十一、腎臟 TBARS 含量 47
十二、小腸雙糖?活性試驗 48
柒、討論 49
一、飲用紅豆或黑豆水對大白鼠體重、組織臟器重量變化與飲食狀況的影響 49
二、飲用紅豆或黑豆水對大白鼠糖類代謝的影響 49
三、飲用紅豆或黑豆水對大白鼠脂類代謝的影響 51
四、飲用紅豆或黑豆水對大白鼠TBARS濃度與抗氧化相關物質及酵素活性的影響 53
五、飲用紅豆或黑豆水對肝臟及腎臟生化指標之影響 55
六、飲用紅豆或黑豆水對大白鼠小腸雙糖?活性的影響 56
捌、結論 57
玖、參考文獻 58
中華民國糖尿病協會,2007。臺灣糖尿病宣言。台北。台灣。

行政院衛生署統計資料,2007。民國九十六年死因統計結果摘要。台北。台灣。

李時珍,1990。本草綱目。大台北出版社。台北。862。

肖湘、盧剛、張捷、俞麗君、張爾賢,2000。黑色食品色素清除活性氧功效及抗氧化活性。藥物生物技術。7: 112-115。

金惠民,2003。疾病,營養與膳食療養。華香園出版社。台北。277-284

禹應慈,2007。浸泡條件對四種豆類水浸泡液與浸泡豆粒乙?萃取物
抗氧化活性之影響。國立臺灣海洋大學食品科學系碩士論文,基隆。

島崎 弘幸,1990。 生體內過酸化 脂質 測定。過酸化脂質實驗法。(金田尚志、值田伸夫編著)。pp.81。醫藥齒科出版社,東京。

秦大京,1980。中國傳統的保健珍品 黑豆。鄉間小路。16(35):15-17

連大進、游添榮、吳昭慧、吳振碩、王裕權,1998。黑豆新品種台南3號之育成,台南區農業改良場研究彙報。35:12-24

陳佳音,2007。綠豆水對第二型糖尿病大白鼠糖代謝與脂質代謝之影響。國立臺灣海洋大學食品科學系碩士論文,基隆。

游添榮,1998。雲嘉南地區紅豆栽培技術。台南區農業改良場技術專刊。80 : 87-88

楊棋明、楊智旭、趙璧玉,1999。市售黑豆和黃豆抗氧化力之灰預測比較。中華民國營養學會雜誌 24:201-214

鄭貴珠,2002。裡作紅豆生產成本簡要分析。台灣區雜糧發展基金會。346:24-26

戴文禎,1997。黑豆萃取物之抗氧化效用。中國文化大學生活應用科學研究所碩士論文,台北
Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S., Rezaiee, A. 2004. Pesticides and oxidative stress: a review. Med. Sci. Monit. 10(6): RA144-

Abou-Seif, M. A. and Youssef, A. A. 2004. Evaluation of some biochemical changes in diabetic patients. Clin. Chim. Acta. 346: 161-170

Akkus, I., Kalak, S., Vural, H., Caglayan, O., Menekse, E., Can, G. and Durmus, B. 1996. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin. Chim. Acta. 244(2): 221-227

Amarowicz, R., Estrella, I., Hern ndez, T., Troszynska, A. 2008. Antioxidant activity of extracts of adzuki bean and its fractions. J. Food Lipid. 119–136

Amarowicz, R., Troszynska, A., Barylko-Pikielna, N. and Shahidi, F. 2004. Polyphenolics extracts from legume seeds: correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids. 11: 278-286

American Diabetes Association. 2003. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Follow-up Report on the Diagnosis of Diabetes Mellitus. Diabetes Care 26: 3160-3167

Anderson, M. E. 1985. Determination of glutathione and glutathione disulfide in biological sampls. In Meister, A. (ed.) Methods Enzymol 113 pp 548-555. Orlando, FL: Academic press.
RA147

AOAC. 2000. Official methtods of analysis. Association of Official analytical Chemists: Washington, DC.

Amorini, A.M., Fazzina, G., Lazzarino, G., Tavazzi, B., Di Pierro, D., Santucci, R., Sinibaldi, F., Galvano, F., Galvano, G. 2001. Activity and mechanism of the antioxidant properties of cyanidin-3-O-beta- glucopyranoside, Free Radic. Res. 35: 953-966

Bawadi, H. A., Bansode, R. R., Trappey I. I. A., Truax R. E., Losso, J. N. 2005. Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett. 218, 153?162.

Bayraktutan, U., Draper, N., Lang, D. and Shah, A. M. 1998. Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res. 38: 256-262

Blakytny, R. and Harding, J. J. 1992. Glycation (non-enzymic glycosylation) inactivates glutathione reductase. Biochem. J. 288: 303-307.

Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414 : 813-820

Carlson, S.E. and Goldford, S. 1979. A sensitive enzymatic method of determination of free and esterified tissue cholesterol. Clin. Chem. Acta . 79 : 575-582

Ceriello, A. and Motz, E. 2004. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 24 : 816-823

Chou, S.T., Chang, C.T., Chao, W.W., Chung, YC. 2002. Evaluation of antioxidative and mutagenic properties of 50% ethanolic extract from red beans fermented by Aspergillus oryzae. J. Food Prot. 65:1463-1469.

Choung, M. G., Baek, I. Y., Kang, S. T., Han, W. Y., Shin, D. C., Moon, H. P., Kang, K. H. 2001. Isolation and determination of anthocyanins in seed coats of black soybean (Glycine max (L.) Merr.). J. Agric. Food Chem. 49 : 5848-5851

Dahlqvist, A. 1968. Assay of intestinal disaccharidases. Anal. Biochem. 22 : 99-107

Elsenhans, B., Caspary, W.F. 1987. Absorption of carbohydrates. In: Caspary WF. eds. Structure and function of the small intestine. Amsterdam Excerptia Medica. pp. 1539-1592

Foger, B., Chase, M., Amar, M.J., Vaisman, B.L. 1999. Cholesteryl ester transfer protein corrects dysfunctional HDL and reduces atherosclerosis in lecithin: cholesterol acyltransferase (LCAT) – transgenic mice. J Biol Chem. 274: 36912-36920.

Folch, J., Lees, M. and Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J Bio. Chem. 226: 497-509

Forbes, J.M., Coughlan, M.T., Cooper, M.E. 2008. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6):1446-1454

Fungwe, T. V., Cagen, L. M.,Wilcox, H. G. and Heimberg, M. 1992. Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res. 33: 179-191.
Fujimura and Kugimiya, 1993 G. Fujimura and M. Kugimiya, Gelatinization of starch inside cotyledon cell of adzuki bean, Nippon Shokuhin Kogyo Gakkaishi 40 1993, pp. 490-495.
Furuta, S., Takahashi, M., Takahata, Y., Nishiba, Y., Oki, T., Masuda, M. 2003. Radical-scavenging activities of soybean cultivars with black seed coats. Food Sci. Technol. Res. 9: 73-75
Golay, A., Zech, L., Shi, M. Z., Chiou,Y. A., Reaven, G. M. and Chen, Y. D. 1987. High density lipoprotein (HDL) metabolism in noninsulin- dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J. Clin. Endocrinol. Metab. 65: 512-518

Griffith, O.W. 1985. Glutathione and glutathione disulphide. In Bergmeyer, H.U. (ed.) Methods of Enzymatic Analysis 8, 3rd edn,. VCH-Verlagsgesellschaft, Weinheim, pp. 521–529

Han, K. H., Fukushima, M., Ohba, K., Shimada, K., Sekikawa, M., Chiji, H., Lee, C.H., Nakano, M. 2004 . Hepatoprotective effects of the water extract from adzuki bean hulls on acetaminophen-induced damage in rat liver. J. Nutr. Sci. Vitaminol. 50 : 380-383

Hayden, M. R. and Tyagi, S. C. 2002. Intimal redox stress: accelerated atherosclerosis in metabolic syndrome and type 2 diabetes mellitus. Atheroscleropathy.Cardiovasc. Diabetol. 1: 1-27

Herr, R. R., Jahnke, H. K. and Argoudelis, A. D. 1967. Structure of streptozotocin. J. Am. Chem. Soc. 89 (18): 4808-4809

Hyer S.L. and. Shehata H.A. 2005. Gestational diabetes mellitus. Current Obstetrics and Gynaecology, 15:368-374

Itoh, T., Kita, N., Kurokawa, Y., Kobayashi, M., Horio, F., Furuichi, Y. 2004. Suppressive effect of a hot water extract of adzuki beans (Vigna angularis) on hyperglycemia after sucrose loading in mice and diabetic rats. Biosci. Biotechnol. Biochem.(68) 12: 2421-2426

Joan, F. 1998. Protective and normalizing benefits of soy: clinicl considerations monograph. Nutritional Therapeutics, Inc. 70-74

John, Y. and Yu T.F. 2003. Effects of isoflavones (soy phytoestrogens) on serum lipids: a meta-analysis of randomized controlled trials. J. Nutr. 2 : 15-18

Kahlon, T.S. and Woodruff, C.L. 2002. In vitro binding of bile acids by soy protein pinto beans, black beans and wheat gluten. Food Chem. 79(4): 425-429

Kawai, A. and Fujita, K. 2007. Small red bean (azuki) sheds biologically active substances as a prerequisite step for germination, one of which displays the antiviral activity against the rabies virus infectivity and infections in culture. Microbiol. Immunol. 51(11):1071-9

Komosinska-Vassev, K., Olczyk, K., Olczyk, P. and Winsz-Szczotka, K. 2005. Effects of metabolic control and vascular complications on indices of oxidative stress in type 2 diabetic patients. Diabetes Res. Clin. Pract. 68: 207-216.

Konrad, R. J. and Kudlow, J. E. 2002. The role of O-linked protein glycosylation in beta-cell dysfunction. Int. J. Mol. Med. 10: 535-539.

Krauss, S., Zhang, C.Y., Scorrano, L., Dalgaard, L.T., St-Pierre, J., Grey, S.T. and Lowell, B.B. 2003. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction. J. Clin. Invest. 112:1831-1842

Krebs, M. and Roden, M. 2005. Molecular mechanisms of lipid-induced insulin resistance in muscle, liver and vasculature. Diabetes Obes Metab. 7: 621-632

Kuo, P.C., Rudd, M.A., Nicolosi, R., Loscalzo, J. 1989. Effet of dietary fat saturation and cholesterol on low density lipoprotein degradation by mononuclear cells of cebus monkeys. Arteriosclerosis 9: 919-927

Laaksonen, D. E., Atalay, M., Niskanen, L., Uusitupa, M., Hanninen, O. and Sen C, K. 1996. Increased resting and exercise-induced oxidative stress in young IDDM men. Diabetes Care 19: 569-574

Lin, P. Y. and Lai, H. M. 2006. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem. 54: 3807-3814

Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275

Maruyama, C., Araki, R., Kawamura, M., Kondo, N., Kigawa, M., Kawai, Y., Takanami,Y., Miyashita, K., and Shimomitsu, T. 2008. Azuki bean juice lowers serum triglyceride concentrations in healthy young women. J Clin Biochem Nutr. 43: 19–25

Madhujith, T. and Shahidi, F. 2005. Antioxidant potential of pea beans (Phaseolus vulgaris L.). J. Food Sci. 70: 85-90

Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M. and Ribes, G. 1998. Experimental niddm: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47: 224-229

Masiello, P., Novelli, M., Fierabracci, V. and Bergamini, E. 1990. Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res. Commun. Chem. Pathol. 69: 17-32

Massey, L. K., Palmer, R. G., Horner, H. T. 2001. Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other
edible legumes J. Agric. Food Chem. 49:4262-4266

Meister, A. 1988. Glutathione metabolism and its selective modification. J Biol Chem, 263: 17205-17208

Mehlum, A., Staels, B., Duverger, N., Tailleux, A. 1995. Teffue-specific expression of the human gene for lecithin-cholesterol acyltansferase in transgenic mice alters blood lipid, lipoproteins and lipases towards a less atherogenic profile. Eur J Biochem. 230: 567-575

Motta, M., Bennati, E., Ferlito, L. and Malaguarnera, M.. 2006. Diabetes mellitus in the elderly: Diagnostic features. Arch Gerontol Geriatr. 42:101-106

Murakami, I. and Ikeda, T. 1998. Effects of diabetes and hyperglycemia on disaccharidase activities in the rat. Scand. J. Gastroenterol. 33: 1069-1073

Murata, M.,Takahashi, A., Saito, I. and Kawanishi, S. 1999. Site-specific DNA methylation and apoptosis: induction of diabetogenic streptozotocin. Biochem. Pharmacol. 57: 881-887.

Nagayama, F., Ohshima, H. and Umezawa, K. 1972. Distribution of glucose-6 -phosphate metabolizing enzyme in fish. Bull Jpn Soc. Sci Fish 38: 589-593

Nazirog!lu, M. and Butterworth, P. 2005. Protective effects of moderate exercise with dietary vitamin C and E on blood antioxidative defense mechanism in rats with streptozotocin-induced diabetes. Can J Appl Physiol . 30(2): 172–85

Nicolosi, R.J., Wilson, L.J., Krause, B.R. 1998. The ACAT inhibitor, CI-1011 is effective in the prevention and regression of aortic fatty streak area in hamsters. Atherosclerosis 137: 77-85

Nishi,S., Saito,Y., Souma, C., Kato, J., Koaze, H., Hironaka, K. and Kojima, M. 2008. Suppression of serum cholesterol levels in mice by adzuki bean polyphenols, FSTR. 14: 217-220

Nourooz-Zadeh, J., Rahimi, A., Tajaddini-Sarmadi, J., Tritschler, H., Rosen, P.,Halliwell, B. Betteridge, D. J. 1997. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40(6): 647-653

Nukatsuka, M., Yoshimura, Y., Nishida, M., Kawada, J. 1990 Importance of the concentration of ATP in rat pancreatic beta cells in the mechanism of streptozotocin-induced cytotoxicity. J Endocrinol 127: 161-165.

Oyaizu, M. 1988. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 35: 771-775

Padmavati, M., Sakthivel, N., Thara, K. V. and Reddy, A. R. 1997. Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochem. 46: 499-502

Paolisso, G.,Gambardella, A.,Tagliamonte, M.R., Saccomanno, F., Salvatore, T., Gualdiero, P., D'Onofrio, M.V. and Howard, B.V. 1996. Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab. 81: 4244-4248

Park, K.Y., Kwon, S.H., Ahn, I. S., Kim, S. O., Kong, C. S., Chung, H. Y., Do, M. S. 2007. Weight reduction and lipid lowering effects of black soybean anthocyanins in rats fed high fat diet. FASEB J. 21 : 842-846

Parthiban, A., Vijayalingam, S., Shanmugasundaram, K. R. and Mohan, R. 1995. Oxidative stress and the development of diabetic complocations- antioxidants and lipid peroxidation in erythrocytes and cell membrane. Cell Biology International 19: 987.

Quintao, E. C. R. and Sperotto, G. 1987. The role of dietary cholesterol in the regulation of human body cholesterol metabolism. Adv Lipid Res 22:173-188

Reddi, A. S. and Bollineni, J. S. 1997. Renal cortical expression of mRNAs for antioxidant enzymes in normal and diabetic rats. Biochem. Biophys. Res. Commun. 235(3): 598-601.

Robertson, R. P. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem . 279:42351-42354

Rolo, A. P. and Palmeira, C. M. 2006. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 212:167-78.

Sailaja, Y. R., Baskar, R. and Saralakumari, D. 2003. The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic. Biol.Med. 35: 133-139

Sato, S., Yamate, J., Hori, Y., Hatai, A., Nozawa, M., Sagai, M. 2005. Protective effect of polyphenol-containing azuki bean (Vigna angularis) seed coats on the renal cortex in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 16: 547-553

Shih, C.C., Wu, Y.W., Lin W. C. 2002. Antihyperglycemic and antioxidant properties of Anoectochilus Formosanus in diabetic rats. Clin Exp pharmacol. 29:684-688

Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948

Shirahata, S., Kabayama, S ., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., Otsubo, K., Morisawa, S. and Katakura, Y. 1997. Electrolyzed-reduced water scavenge active oxygen species and protects DNA from oxidative damage. Biochem. Biphy. Res. Commun. 234: 269-274

Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M. 1999 . Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin - Ciocalteu Reagent. Meth. Enzymol. 299: 152-178

Stern, M. P. 1995. Diabetes and cardiovascular disease. The "common soil"hypothesis. Diabetes 44: 369-374

Sugiyama, Y., Odaka, S., Itokawa, S., Itokawa, E. 1995. TMP-153, a nevel ACAT inhibitor, lowers plasma cholesterol throuth its hepatic action in Golden hamster. Atherosclerosis 118(1): 145-153

Takahashi, R., Ohmori, R., Kiyose, C., Momiyama, Y., Ohsuzu, F., Kondo, K. 2005. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agric. Food Chem. 53: 4578-4582

Takehisa, F. and Suzuki, Y. 1990. Effect of guar gum and cholestyramine on plasma lipoprotein cholesterol in rats. J. Jpn. Soc. Nutr. Food Sci 43: 269-274

Uchiyama, M. and Mihara, M. 1978. Determination of malonaldehyde precusor in tissue by thiobarbituric acid test. Anal Biochem 86: 271-278

Wolff, S. P. and Dean, R. T. 1987. Glucose autoxidation and proteinmodification. The potential role of autoxidative glycosylation in diabetes. Biochem. J. 245: 243-250

Wang H, Cao G, Prior RL. 1997. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem . 45: 304-309

World Health Organization. 1999. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complications. Report of a WHO Consultation. WHO/NCD/NCS/99.2.

Wu, S. J., Wang, J. S., Lin, C. C., Chang, C. H. 2001. Evaluation of hepatoprotective activity of legumes. Phytomedicine 8: 213-219

Xu, B. J. and Chang, S. K. C. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci., 72 : S159?S166
Xu, B. J., Yuan, S. H., Chang, S. K. C. 2007. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J. Food Sci. 72 : S167?S177.
Yamai, M., Tsumura, K., Kimura, M., Fukuda, Seiji., Murakami, T. and Kimura, Y. 2003. Antiviral activity of a hot water extract of black soybean against a Human respiratory illness Virus. Biosci. Biotechnol. Biochem. 67 : 1071-1079

Zadeh, N., Rahimi, A., Sarmadi, S. T., Tritschler, H., Rosen, P., Halliwell, B., Betteridge, D. J. 1997. Relationships between plasma measures of oxidative stressand metabolic control in NIDDM. Diabetologia 40: 647-653

Zhao, Q.W., Huang, X., Lou, Y.J., Weber, N., Proksch, P. 2007. Effects of ethanol extracts from Adzuki bean (Phaseolus angularis Wight.) and Lima bean (Phaseolus lunatus L.) on estrogen and progesterone receptor phenotypes of MCF-7/BOS cells. Phytother Res. 21 :648-52

Zirulnik, F. and Gimenez, M. S. 1999. Dietary regulation of liver NADP-isocitrate dehydrogenase in the rat. Nutr Res. 19: 247-255
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top