(3.236.214.19) 您好!臺灣時間:2021/05/07 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳偉傑
研究生(外文):Wei-Chieh Chen
論文名稱:探討Thermoanaerobacteriumsp.NTOU2利用不同醣類醱酵生產乙醇之研究
論文名稱(外文):Ethanol Production From Different Sugars by Thermoanaerobacterium sp. NTOU2
指導教授:劉秀美劉秀美引用關係
指導教授(外文):Shiu-Mei Liu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:醣類利用酵母粉濃度生產乙醇酸水解物
外文關鍵詞:Thermoanaerobacterium sp. NTOU2Sugars MetabolizedYeast extractEthanol productionAcid hydrolysates
相關次數:
  • 被引用被引用:2
  • 點閱點閱:182
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文以一株分離自龜山島海底熱泉中,厭氧嗜熱醣類分解菌Thermoanaerobacterium sp. NTOU2作為研究目標,其最適生長溫度為70℃,可利用五碳醣、六碳醣與多醣為生長碳源,乙醇為主要代謝產物之一。此菌株最適培養條件為培養基中緩衝溶液以10 mM KH2PO4/K2HPO4組合9 g/L NaHCO3-CO2。培養基中添加0.5 % 澱粉或0.5 % 葡萄糖組合 0.5 % 木糖,其生長表現及乙醇產量較使用其他醣類濃度為佳。培養基pH值則以0.5 % 葡萄糖或0.5 % 木糖於pH 6.5或pH 6.8培養條件下,其生長表現及乙醇生產量最佳。在醣類濃度與酵母粉濃度方面,以0.5 % 葡萄糖或0.5 % 木糖分別組合0.5 % 酵母粉,1 % 澱粉組合1 % 酵母粉,其生長表現及乙醇生產量最佳。木質纖維素酸水解時的副產物甲酸、醋酸、?喃甲醛、5-羥甲基糠醛、果糖酸對此菌株利用醣類生產乙醇方面,發現0.5 % 甲酸、0.3 % 醋酸、0.05 % ?喃甲醛、0.75 % 5-羥甲基糠醛及0.5 % 果糖酸存在時都會影響此菌利用0.5 % 葡萄糖時生產乙醇的產量,而0.5 % 甲酸、0.4 % 醋酸、0.1 % ?喃甲醛、0.5 % 5-羥甲基糠醛及0.5 % 果糖酸則會影響此菌利用0.5 % 木糖時生產乙醇的產量。
In this report a new thermophilic anaerobic bacterium Thermoanaerobacterium sp. NTOU2 from Gueishan island which was capable of growth utilizing hexose and pentose at 70 ℃ was used to investigate its potential for ethanol production/yield from sugars. When using 10 mM KH2PO4/K2HPO4+9 g/L NaHCO3–CO2 as buffer in medium, the growth of strain NTOU2 were faster than other buffer. When the strain NTOU2 using 0.5 % starch or 0.5 % glucose + 0.5 % cellobiose as the substrate, the ethanol production were highest than other sugar. When using 0.5 % glucose and 0.5 % xylose as the substrate, the highest ethanol production by strain NTOU2 is at pH 6.5. The highest ethanol production was found in the medium containing 0.5 % glucose + 0.5 % yeast extract, 0.5 % xylose + 0.5 % yeast, 1.0 % starch and 1.0 % yeast. The presence of 0.75 % or higher concentration of 5-HMF, 0.5 % or higher concentration of levulinic acid, 0.05 % or higher concentration of furfural, 0.5 % or higher concentration of formic acid, and 0.3 % or higher concentration of acetic acid sharply inhibited the growth and ethanol production by strain NTOU2 when 0.5 % glucose was used as the substrate. The presence of 0.5 % or higher concentration of 5-HMF, 0.5 % or higher concentration of levulinic acid, 0.1 % or higher concentration of furfural, 0.5 % or higher concentration of formic acid, and 0.4 % or higher concentration of acetic acid sharply inhibited the growth and ethanol production by strain NTOU2 when 0.5 % xylose was used as the substrate.
目錄

中文摘要..................................................................................................II
英文摘要.................................................................................................III
第一章 前言............................................................................................1
1. 利用醣類分解菌發展生質乙醇(bioethanol)之重要性.....................1
2. 木質纖維素的來源與組成.................................................................2
3. 纖維轉化乙醇之程序.........................................................................3
4. 醣類分解菌的生理特色...................................................................10
5. 研究目的...........................................................................................18
第二章 材料與方法..............................................................................20
1. 實驗菌株來源...................................................................................20
2. 實驗材料及製備...............................................................................20
3. 實驗分析...........................................................................................25
4. 實驗用藥品來源...............................................................................28
5. 實驗用儀器來源...............................................................................31
第三章 結果..........................................................................................34
1. Thermoanaerobacterium sp. NTOU2在不同緩衝液下生長情形及pH變化...................................................................................................34
2. 在不同pH下Thermoanaerobacterium sp. NTOU2利用0.5% 葡萄糖時之生長情形與乙醇累積總量........................................................34
3. 在不同pH下Thermoanaerobacterium sp. NTOU2利用0.5% 木糖時之生長情形與乙醇累積總量............................................................35
4. Thermoanaerobacterium sp. NTOU2利用單一醣類時之生長情形與乙醇累積總量........................................................................................35
5. Thermoanaerobacterium sp. NTOU2利用混合醣類時之生長情形與乙醇累積總量........................................................................................36
6. Thermoanaerobacterium sp. NTOU2利用不同濃度的葡萄糖及酵母粉時之生長情形及乙醇累積總量........................................................36
7. Thermoanaerobacterium sp. NTOU2利用不同濃度的木糖及酵母粉時之生長情形及乙醇累積總量............................................................37
8. Thermoanaerobacterium sp. NTOU2利用不同濃度的澱粉及酵母粉時之生長情形及乙醇累積總量............................................................37
9. Thermoanaerobacterium sp. NTOU2在不同濃度的甲酸和醋酸存在
下利用0.5% 葡萄糖時之生長情形與乙醇累積總量............................................................................................................37
10. 在不同濃度的甲酸和醋酸存在時利用0.5% 木糖時之生長情形與乙醇產量............................................................................................38
11.在不同濃度的?喃甲醛、5-羥甲基糠醛和果糖酸存在時Thermoanaerobacterium sp. NTOU2利用0.5% 葡萄糖時之生長情形與乙醇累積總量....................................................................................38
12.在不同濃度的?喃甲醛、5-羥甲基糠醛和果糖酸下利0.5 %木糖時之生長情形與乙醇累積總量............................................................39
第四章 討論..........................................................................................41
1. 最適緩衝液及pH值.........................................................................41
2. 利用單一醣類時生長情形與乙醇產量...........................................42
3. Thermoanaerobacterium sp. NTOU2 利用混合醣類時之生長情形與乙醇產量.............................................................................................43
4. Thermoanaerobacterium sp. NTOU2利用不同濃度的醣類及酵母
粉時之生長情形及乙醇產量.................................................................44
5. 甲酸及醋酸對Thermoanaerobacterium sp. NTOU2的影響...........45
6. ?喃甲醛、5-羥甲基糠醛和果糖酸對 Thermoanaerobacterium sp. NTOU2的影響......................................................................................46
7. Thermoanaerobacterium sp. NTOU2應用在同時醣解與醱酵製程上的潛力....................................................................................................48
第五章 參考文獻..................................................................................51

















圖目錄
第一章 前言
圖1. 1975-2005年間全球乙醇生產量趨勢..........................................62
圖2. 植物纖維原料被轉換至乙醇的流程...........................................63
圖3. 厭氧醣類分解菌的發酵程序.......................................................64
圖4. E. coli KO11生產乙醇的代謝路徑...............................................65
第二章 材料及方法
圖5. 研究架構.......................................................................................68
第三章結果
圖6. Thermoanaerobacterium sp. NTOU2在70℃下三種緩衝液對利用0.5% 葡萄糖時之生長影響.............................................................69
圖7. Thermoanaerobacterium sp. NTOU2在70℃下利用混合醣類時之生長曲線及乙醇累積產量情形........................................................73












表目錄
第一章 前言
表1. 2005年時五大主要乙醇生產國家...............................................62
表2. 主要的醣類分解菌利用醣類時的單位乙醇生產量...................66
表3. 主要的三大嗜熱厭氧醣類分解菌...............................................67
表4. Thermoanerobacterium sp. NTOU2在70 ℃下及不同pH的緩衝液中利用0.5 % 葡萄糖時之生長情形及乙醇累積總量....................70
表5. Thermoanerobacterium sp. NTOU2在70 ℃下及不同pH的緩衝液中利用0.5 % 木糖時之生長情形及乙醇累積總量........................71
表 6. Thermoanerobacterium sp. NTOU2在70 ℃下利用單一醣類時之生長情形及乙醇累積總量................................................................72
表 7. Thermoanerobacterium sp. NTOU2在70 ℃下利用不同濃度的葡萄糖及酵母粉時之生長情形及乙醇累積總量................................74
表 8. Thermoanerobacterium sp. NTOU2在70 ℃下利用不同濃度的木糖、澱粉及酵母粉時之生長情形及乙醇累積總量............................................................................................................75
表 9. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的甲酸存在時利用0.5 % 葡萄糖時之生長情形及乙醇累積總量............................................................................................................76
表 10. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的醋酸存在時利用0.5 % 葡萄糖時之生長情形及乙醇累積總量............................................................................................................76
表 11. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的甲酸存在時利用0.5 % 木糖時之生長情形及乙醇累積總量................77
表 12. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的醋酸存在時利用0.5 % 木糖時之生長情形及乙醇累積總量................77
表 13. Thermoanerobacterium sp. NTOU2在70 ℃及不同濃度的?喃甲醛、5-羥甲基糠醛和果糖酸存在時利用0.5 % 葡萄糖時之生長情形及乙醇累積總量.............................................................................................78
表14. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的?喃甲醛存在時利用0.5 % 木糖時之生長情形及乙醇累積總量........79
表 15. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的5-羥甲基糠醛存在時利用0.5 % 木糖時之生長情形及乙醇累積總量............................................................................................................80
表16. Thermoanerobacterium sp. NTOU2在70 ℃下及不同濃度的果糖酸存在時利用0.5 % 木糖時之生長情形及乙醇累積總量............81
表 17. 比較主要的醣類分解菌發酵乙醇產量...................................82
李世強。2007。龜山島海底熱泉分離之一株厭氧嗜高溫醣類分解菌之形
態與特性分析。國立台灣海洋大學,海洋生物研究所。

陳建孝、林畢修平。2007。纖維酒精製程簡介與未來展望。永續產業
發展,35: 6-14。

陳文恆、郭家倫、黃文松、王嘉寶。2007。纖維酒精技術之發展. 植物種苗生技,9: 62-69。

黃麗娜。2007。微生物資源在生質酒精開發之應用。台灣生質酒精發展趨勢研討會。

蔣宇、邵蔚藍。2005。嗜熱厭氧產乙醇桿菌乙醇代謝途徑的初步研究。南京師範大學報(自然科學版),28: 69-73。

Ahn, H. J., and L. R. Lynd. 1996. Cellulose degradation and ethanol production by thermophilic bacteria using mineral growth medium. Appl. Biochem. Biotechnol. 57-58: 599-604.

Altaras, N. E., M. R. Etzel, and D. C. Cameron. 2001. Conversion of sugars to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol. Prog. 17: 52-56.

Av?e, A., and S. Donmez. 2006. Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process. Biochem. 41: 984-989.

Ben-Bassat, A. R. Lamed, and J. G. Zeikus. 1981. Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J. Bacteriol. 146: 192-199.

Buchholz, S. E., M. M. Dooley, and D. E. Eveleigh. 1987. Zymomonas—an alcoholic enigma. Trends Biotechnol. 5:199–204.

Burdette, D. S., S. H. Jung, G. J. Shen, R. I. Hollingsworth, and J. G. Zeikus. 2002. Physiological function of alcohol dehydrogenases and long-chain (C(30)) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 68: 1914-1918.

Cann, I. K. O., P. G. Stroot, K. R. Mackie, B. A. White, R. I. Mackie. 2001. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Evol. Microbiol. 51: 293-302.

Carreira, L. H., J. Wiegel, and L. G. Ljungdahl. 1984. Production of ethanol from biopolymers by anaerobic, thermophilic and extreme thermphilic bacteria: regulation of carbohydrate utilization in mutants of Thermoanaerobacter ethanolicus. Bitechnol. Bioeng. Symp. 13: 183.

Cook, G. M., F. A. Rainey, B. K. C. Patel, H. W. Morgan. 1996. Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int. J. Syst. Bacteriol. 46: 123-127.

Cook, G. M., 2000. The intracellular pH of the thermophilic bacterium Thermoanaerobacter wiegelii during growth and production of fermentation acids. Extremophiles 4: 279-284.

D, amore, T., C. J. Panchal, and G. G. Stewart. 1988. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 54: 110-114.

Dien, B. S., M. A. Cotta, and T. W. Jeffries. 2003. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258-266.

Doelle, M. B., R. J. Millichip, H. W. Doelle. 1989. Production of ethanol from com using inoculum cascading of Zymomonas mobilis. Pro. Biochem. 24: 137-140.

Doran, J. B., H. C. Aldrich, and L. O. Ingram, 1994. Saccharification and fermentation of Sugar Cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol. Bioeng. 44: 240-247.

Durre, P.. 2007. Biobutanol: an attractive biofuel. Biotechnol J. 2: 1525-1534.

Enebo, L.. 1949. Symbiosis in thermophilic cellulose fermentation. Nature 163: 805.

Erbeznik, M., C. R. Jones, K. A. Dawson, and H. J. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 63: 2949-2951.

Fong, J. C., C. J. Svenson, K. Nakasugi, C. T. Leong, J. P. Bowman, B. Chen, D. R. Glenn, B. A. Neilan, and P. L. Rogers. 2006. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 10: 363-372.

Fortman, J. L., S. Chhabra, A. Mukhopadhyay, H. Chou, T. S. Lee, E. Steen, and J. D. Keasling. 2008. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol. 26: 375-381.

Freier, D., C. P. Mothershed, and J. Wiegel. 1988. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54:
204-211.

Gauss, W. F., S. Suzuki, and M. Takagi. 1976. US Patent. 3,990,944.

Georgieva, T. I. and B. K. Ahring, 2007. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl. Microbiol. Biotechnol. 77: 61-68.

Hahn-Hagerdal, B., M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi. 2006. Bio-ethanol--the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556.

Hajny, G. J., C. H. Gardner, G. J. Ritter, and E. Mccoy. 1948. Thermophilic Fermentation of Cellulose in Wood. J. Bacteriol. 56: 141.

Henstra, A. M., J. Sipma, A. Rinzema, and A. J. Stams. 2007. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol. 18: 200-206.

Ho, N. W., Z. Chen, and A. P. Brainard. 1998. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64: 1852-1859.

Hogsett, D., H. Ahn, T. Bernardez, R. South, and L. Lynd. 1992. Direct microbial conversion. Appl. Biochem. and Biotechnol. 34-35: 527-541.

Hunt, S. C.. 2006. Biofuels for Transportation - Short Summary, p. 1-5. In L. Mastny [ed.].

Ingram, L. O., T. Conway, D. P. Clark, G. W. Sewell, and J. F. Preston. 1987. Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53: 2420-2425.

Ismail, A. A., and A. M. Ali. 1971. Selection of high ethanol-yielding Saccharomyces. I. Ethanol tolerance and the effect of training in Saccharomyces cerevisiae .Hansen Folia Microbiol. (Praha) 16: 346-349.

Jacques, K. A., T. P. Lyons, and D. R. Kelsall, 1999. The alcohol textbook : a reference for the beverage, fuel and industrial alcohol industries Nottingham : Nottingham Univer. Press.

Lamed, R., and J. G. Zeikus. 1980a. Glucose fermentation pathway of Thermoanaerobium brockii. J. Bacteriol. 141: 1251-1257.

Lamed, R., and J. G. Zeikus. 1980b. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and 38. catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol. 144: 569-578.

Larsen, L., P. Nielsen, B. K. Ahring. 1997. Thermoanaerobacter mathranii sp.nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch. Microbiol. 168: 114-119.

Lee, Y.-E., M. K. Jain, C. Lee, and J. G. Zeikus. 1993. Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; Reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., Respectively; and Transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. Syst. Bacteriol. 43: 41-51.

Lee, J.. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1-24.

Liu, S. Y., F. A. Rainey, H. W. Morgan, F. Mayer, and J. Wiegel. 1996. Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int. J. Syst. Bacteriol. 46: 388-396.

Lawford, H., and J. Rousseau. 1999. The effect of glucose on high-level xylose fermentations by recombinant Zymomonas in batch and fed-batch fermentations. Appl. Biochem. Biotechnol. 77: 235-249.

Lovitt, R. W., R. Longin, and J. G. Zeikus. 1984. Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 48: 171-177.

Lovitt, R. W., G. J. Shen, and J. G. Zeikus. 1988. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815.

Lynd, L. R., H. E. Grethlein, and R. H. Wolkin. 1989. Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum. Appl. Environ. Microbiol. 55: 3131-3139.

Lynd, L. R.. 1996. Overview and evaluation of fuel ethanol production from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy Environ. 21:403–465.

Lynd, L. R., P. J. Weimer, W. H. Van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577, table of contents.

Martin, G. J., A. Knepper, B. Zhou, and N. B. Pamment. 2006. Performance and stability of ethanologenic Escherichia coli strain FBR5 during continuous culture on xylose and glucose. J. Ind. Microbiol. Biotechnol. 33: 834-844.

Mia, K., L. G. Loginova, S. N. Ostanin, G. V. Bolondz, L. A. Seliverstova, and Z. T. Ivanova. 1954. Results with fermentation of wood hydrolysates with thermophiles yeast. Tr Latv Padomju Soc Repub Zinat Akad Mikrobiol. Inst. 3: 73-80.

Mia, K., and G. V. Bolondz, 1959. Survival and productivity of yeasts during continuous fermentation of wood hydrolysates. Mikrobiol. 28: 427-432.

Michel, G. P., and J. Starka, 1986. Effect of ethanol and heat stresses on The protein pattern of Zymomonas mobilis. J Bacteriol 165: 1040-1042.

Millichip, R. J., and H. W. Doelle. 1989. Large-scale ethanol production from Milo (Sorghum) using Zymomonas mobilis. Proce. Biochem. 24: 141-145.

Moat, A. G., J. W. Foster, and M. P. Spector. 2002. Introduction to microbial
physiology. p.21-22. Microbial physiology. Wiley-Liss.

Neale, A. D., R. K. Scopes, J. M. Kelly, and R. E. Wettenhall. 1986. The two alcohol dehydrogenases of Zymomonas mobilis. Purification by ifferential dye ligand chromatography, molecular characterisation and physiological roles. Eur. J. Biochem. 154: 119-124.

Ng, T. K., A. Ben-Bassat and J. G. Zeikus. 1981. Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl. Environ. Microbiol. 41: 1337-1343.

Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam and L. O. Ingram. 1991. Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl. Environ. Microbiol. 57:2810-2815.

Palmqvist, E., H. G., N. Q. Meinander and B. Hahn-Hagerdal. 1999. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46-55.

Pampulha, M. E., and MC. Loureiro-Dias, 1989. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl. Microbiol. Biotechnol. 31:547–550.

Peng, H., Y. Gao, and Y. Xiao, 2008, The high ethanol tolerance in a thermophilic bacterium Anoxybacillus sp. WP06. Sheng Wu Gong Cheng Xue Bao 24: 1117-1120.

Persson, P., J. Andersson, L. Gorton, S. Larsson, N. O. Nilvebrant and L. J. Jonsson. 2002. Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability oflignocellulose hydrolysates for production of fuel ethanol. J. Agric. Food Chem. 50: 5318-5325.

Rogers, P. L., K. J. Lee, M. L. Skotnicki, and D. E. Tribe. 1982. Ethanol production by Zymomonas mobilis. Adv. Biochem. Engin. 23:37–84.

Rogers, P., J. S. Chen, and M. J. Zidwck. 2006. Organic Acid and Solvent Production. The Prokaryotes 1: 511-755.

Rossi, M., M. Ciaramella, R. Cannio, F. M. Pisani, M. Moracci, and S. Bartolucci. 2003. Extremophiles 2002. J. Bacteriol. 185: 3683-3689.

Sikkema, J., J. A. De Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201-222.

Skotnicki, M. L., R. G. Warr, A. E. Goodman, K. J. Lee, and P. L. Rogers.1983. High-productivity alcohol fermentations using Zymomonas mobilis. Biochem. Soc. Symp. 48: 53-86.

Slapack, G. E., I. Russell, and G. G. Stewar. 1987. Thermophilic microbes in ethanol production / authors, Gary E. Slapack, Inge Russell, Graham G. Stewart. Boca Raton, Fla. : CRC Press.

Sommer, P., T. Georgieva, and B. K. Ahring. 2004. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem. Soc. Trans. 32: 283-289.

Sprenger, G. A.. 1996. Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic rotes. FEMS Microbiol. Lett. 145.

Stetter, K. O., 1999. Extremophiles and their adaptation to hot environments. FEBS Letters. 452 22-25.

Targonski, Z., S. Bujak, and A. Baraniak, 1985. Acid hydrolysis of beech
sawdust hemicellulose and ethanol fermentation of hydrolysates by
Fusarium sp. 27. Acta. Microbiol. Pol. 34: 261-269.
Sedlak, M., and N. W. Ho. 2004. Characterization of the effectiveness of
hexose transporters for transporting xylose during glucose and xylose
co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:
671-684.

Shaw, A. J., K. K. Podkaminer, S. G. Desai, J. S. Bardsley, S. R. Rogers, P. G. Thorne, D. A. Hogsett and L. R. Lynd. 2008. Metabolic engineeringof a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. USA 105: 13769-13774.

Tao, H., R. Gonzalez, A. Martinez, M. Rodriguez, L. O. Ingram, J. F. Preston, and K. T. Shanmugam, 2001. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J. Bacteriol. 183: 2979-2988.

Thomasser, C., H. Danner, M. Neureiter, B. Saidi, and R. Braun. 2002. Thermophilic fermentation of hydrolysates: the effect of inhibitors on growth of thermophilic bacteria. Appl. Biochem. Biotechnol. 98-100: 765-773.

Toivari, M. H., L. Ruohonen, A. N. Miasnikov, P. Richard and M. Penttila. 2007. Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl. Environ. Microbiol. 73: 5471-5476.

Verduyn, C., E. Postma, W. A. Scheffers, and J. P. Van Dijken. 1990. Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136:405–412.

Wiegel, J., L. G. Ljungdahl, and J. R. Rawson. 1979. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139: 800-810.

Wiegel, J., 1980. Formation of ethanol by bacteria: A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36: 1434–1446.

Wiegel, J., and G. Lars. 1981. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol.128: 343-348.

Wiegel, J., C. P. Mothershed, and J. Puls. 1985. Differences in xylan degradation by various noncellulolytic thermophilic anaerobes and Clostridium thermocellum. Appl. Environ. Microbiol. 49: 656-659.

Wiegel, J.. 1992. The obligately anaerobic thermophilic bacteria. p. 105–184.
In: J. K. Kristjansson (ed.), Thermophilic Bacteria, CRC Press. Boca Raton, FL.

Wiegel., J., and F. Canganella. 2002. Extreme thermophiles. Encyclopedia of Life Sciences 1-12.

Wills, C., P. Kratofil, D. Londo, and T. Martin. 1981. Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch. Biochem. Biophys. 210: 775-785.

Wooley, R., M. Ruth, D. Glassner, and J. Sheehan. 1999. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog. 15: 794-803.

Xue, Y., Y. Xu, Y. Liu, Y. Ma, and P. Zhou. 2001. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int. J. Syst. Evol. Microbiol. 51: 1335-1341.

Yomano L. P., S. W. York, and L. O. Ingram. 1998. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20: 132-138.

Zaldivar, J., A. Martinez, and L. O. Ingram. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65: 24-33.

Zeikus, J. G., A. Ben-Bassat, T. K. Ng, and R. J. Lamed. 1981. Thermophilic ethanol fermentations. Basic. Life. Sci. 18: 441-461.

Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240-243.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔