(18.204.227.34) 您好!臺灣時間:2021/05/14 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張鈺苓
研究生(外文):Yu-Ling Chang
論文名稱:銅基防污漆的環境流佈和生態效應之文獻探討
論文名稱(外文):The environmental fate and ecological effect of copper-based antifouling paint: a review
指導教授:程一駿程一駿引用關係
指導教授(外文):I-Jiunn Cheng
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:64
中文關鍵詞:銅基防污漆環境流佈生態效應
外文關鍵詞:copper-based antifouling paintenvironmental fateecological effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
海洋生物附著在水下建物及船隻,會降低其使用效率及壽命,並增加能源的損耗。發展有效的抗污損劑,防止污損生物的附著和生長,是世界各國積極研究的項目。抗污損劑為毒性化合物,有抑制附著生物的功能,而混有抗污損劑的塗料,我們稱為防污漆。自2003年起含有三丁基錫(TBT)的防污漆禁用後,銅基防污漆成為抗污損漆的主流,雖然銅的毒性沒有TBT來得高,然而過量的銅仍會對環境造成危害,所以各國也紛紛開始制定排放標準與極力研究銅污染對生態環境造成的效應。
銅基防污漆對生態效應的評估,主要是利用釋放速率、時空分佈範圍、生物累積及生物活性,來作為評估的重點。在多種關於銅的釋放速率之測量方法中,美國海軍所研發的圓盤測量法(Dome method),被指出是為最接近實際釋放情況的測量方式。而在銅的時空分佈範圍研究中發現,銅離子容易與底泥沈積物結合,持久的存留於沉積物中,在低水流交換速率和高銅基防污漆使用率的地區,如封閉或半封閉的河口及港灣等,可能會造成當地銅離子濃度顯著的增加。在評估生物累積情形的研究中發現,使用銅基防污漆或人為排放之銅污染,會造成附近河川及海域生物體內銅累積含量明顯增加。而在對生物活性影響的研究中則會發現,在銅濃度上升或是暴露於含銅環境的時間增加後,生物體內的酵素活性容易受到損害。
為了減少銅污染對海洋環境的衝擊,積極開發對環境無害且有效的防污漆,是全世界刻不容緩的課題。但在新的防污漆上市應用之前,也有部分學者在研究一些可以減少或延緩防污漆內銅排放至環境中的方法,如使用最佳管理實行法(BMPs)所規範的方式來清洗船殼,但其終究只是治標不治本的方式,未來還是應朝向無毒性的防污塗料來繼續發展,以有效地解決生物污損的問題及保護海洋環境。
Marine organism adhesion to the underwater building and the ship will reduce facilities’ efficiency and service life; also will increase the energy wastage. Countries worldwide are eager to search for a more effective antifoulant to restrain the adhesion and growth of fouling organisms. The antifouling paints are portative coating mixed with antidoulant, which contains toxic compounds to restrain the growth of sessile organisms. After 2003, the tributyltin (TBT)-based antifouling paints were forbidden; the copper-based antifouling paints ware since become the most extensively used. Although the toxicity of copper is lower than TBT, but the increasing accumulation of copper might still cause environmental damage. As a result, numerous countries begin to establish the discharge standard and assess the ecological effects of copper contamination.
To estimate the ecological effect of copper-based antifouling, the assessment protocol is based on the use release rate, spatiotemporal distribution, bioaccumulation, and bioactivity for the point of assess. There are many kinds of methods to measure copper release rate. “Dome method” developed by the U.S. navy is widely accepted for it’s closely simulate the real releasing conditions. The studies on the copper spatiotemporal distribution suggested that the sediment is the long-term reservoir for copper ion due to its particle-affiliated nature. In the areas of low flow exchange and extensive use of copper-based antifouling, such as closed or half-closed estuaries and harbors, it might cause an obvious elevation of copper concentration in sediments. The researches of bioaccumulation in aquatic animals indicated copper-based antifouling paints and wastewater discharges can cause obvious elevations of copper accumulation in organisms nearby the sources of contamination. The studies on the effect of copper on bioactivity suggested a long-term exposure to high dosage of copper contamination can disrupt the enzymatic activities of aquatic animals.
In order to reduce the impact of copper contamination to the ocean environments. Development of the harmless and effective antifouling paints deserved an immediate attention worldwide. Before a new antifouling paint becomes available, efforts are devoted to reduce or delay the copper releasing to the environment, such as using “Best Management Practices (BMPs)” for hull cleaning. But it stills not the ideal method. But, to solve the problem fundamentally, seeking for a non-toxic antifouling paint is still demanded in the future.
謝辭…………i
摘要…………ii
Abstract…………iv
第一章 污損生物概述…………1
1-1 前言…………1
1-2 污損生物群聚的演替…………2
1-3 污損生物對人類的影響…………4
第二章 抗污損策略…………5
2-1 抗污損劑、防污漆與其防污機制…………5
2-2 抗污損方法的演進…………6
2-3 新一代抗污損漆的發展…………9
第三章 銅基防污漆的特性與環境流佈…………12
3-1 銅的化學特性與分佈…………12
3-2 銅的用途與進入環境的途徑…………16
3-3 銅污染之研究…………17
第四章 銅基防污漆對生態環境之影響…………21
4-1 銅基防污漆的生態效應…………21
4-2 銅基防污漆所排放銅之環境流佈…………21
4-2.1 銅的釋放速率…………23
4-2.2 銅的時空分佈範圍…………26
4-3 銅基防污漆所排放銅之生態效應…………28
4-3.1 銅在生物體內的累積情形…………29
4-3.2 銅對生物活性的影響…………32
第五章 海洋防污漆的未來發展…………34
5-1 減緩防污漆內銅排放至環境的方法…………34
5-2 未來展望…………35
第六章 結論與建議…………37
表…………38
圖…………41
參考文獻…………48
王慶飛和宋詩哲。2002。金屬材料海洋環境生物污損腐蝕研究進展。中國腐蝕與防護學報,第22卷:184-188頁。
王曉蓉。1983。中國大百科全書-環境科學。中國大百科全書出版社。北京市。1-579頁。
行政院環境保護署。2001。銅的毒理資料。行政院環境保護署毒理資料庫。台北市。
行政院環境保護署。2006。環境保護統計名詞定義。行政院環境保護署統計室。台北市。25-42頁。
李永祺和丁美麗。1991。海洋污染生物學。海洋出版社。北京市。1-504頁。
何汝諧。1998。魚的故事IMPOSEX-海洋污染的作孽(上)。漁業推廣,第136期:57-60頁。
吳春吉。2006。竹科放流水中銅及砷來源追蹤分析及其對香山海域養殖區牡蠣影響之探討。碩士論文。環境工程研究所。國立中央大學。i-vi, 1-123頁。
吳益春、呂昕、王凡、趙元鳳和劉長發。2005。Cu在扇貝組織中的蓄積及其對?活性的影響。應用與環境生物學報,第11卷:559-562頁。
段譽豪。2000。兩種脂肪酸對定置網上附著生物的影響。碩士論文。海洋生物研究所。國立台灣海洋大學。i-ii, 1-57頁。
凌永健。2000。環境荷爾蒙的化學分析。行政院環保署環境檢驗所通訊雜誌雙月刊,第32期:9-15頁。
洪楚璋。1998。國際海洋年系列報導:台灣沿岸海域環境品質變遷之研究。中央研究院週報,第697期。
洪楚璋、許元東、孟培傑和莊淑華。2000。環境內分泌干擾物質:臺灣養殖地區牡蠣及蚵岩螺中有機錫物種之研究。行政院環保署環境檢驗所通訊雜誌雙月刊,第31期:14-24頁。
國際銅業協會(中國)。1999。銅和銅合金的應用。國際銅業協會(中國)。北京市。1-33頁。
黃余得。2002。IMO新公約-管制船舶的有害防污系統。船舶與海運,第19期:7-11頁。
黃宗國和蔡如星。1984。海洋污損生物及其防除(上冊)。海洋出版社。北京市。1-349頁。
黃瓊徵。2001。Furan、Indole及Phenolic acid的衍生物對於網上污損生物防治之研究。碩士論文。海洋生物研究所。國立台灣海洋大學。i-ii, 1-56頁。
趙金榜。2005。無錫防污塗料的現狀和發展(I)。現代塗料與塗裝,第2期:35-38頁。
陳渝。1999。三種抗污損劑對定置網上大型附著生物群落消長之影響。碩士論文。海洋生物研究所。國立台灣海洋大學。1-71頁。
賴麗瑩。1999。談環境荷爾蒙(下)。行政院環保署環境檢驗所通訊雜誌雙月刊,第22期。
韓柏檉、鄭明修和孟培傑。1999。台灣北部海域水體環境品質監測計畫-台灣北部海域重金屬污染及其指標生物之建立。基隆市環境保護局。基隆市。1-100頁。
謝銘輝。2004。養殖環境對於魚病的影響。中國水產,第624期:44-52頁。
魏翠萍。1998。定置網上大型污損生物群落之消長及抗污損劑(TBT)對污損生物抑制作用之探討。碩士論文。海洋生物研究所。國立台灣海洋大學。i, 1-83頁。
鄭顯榮、王正雄、王俊淵、林建輝和陳世偉。1997。毒不上手居家平安久。行政院環境保護署。台北市。1-63頁。
Abarzua, S and S. Jakubowski. 1995. Biotechnological investigation for the prevention of biofouling. 1. Biological and biochemical principles for the prevention of biofouling. Marine Ecology Progress Series, 123:301-312.
Abolmaali, B., H.V. Taylor and U. Weser. 1998. Evolutionary aspects of copper binding centers in copper proteins. pp. 91-190. In R.J.R. Williams (Ed.) Structure and Bonding. Springer. Berlin.
American Chemet Corporation. 2001. IL USA and Nordox Industrier. Deerfield. Oslo, Norway.
American Society For Testing and Materials (ASTM). 2005. Standard Test Method for Determination of Copper Release Rate From Antifouling Coatings in Substitute Ocean Water. ASTM D6442-05.
Australian and New Zealand Environment Conservation Council (ANZECC). 2000. Code of Practice for antifouling and in-water hull cleaning and maintenance. Australian New Zealand Environmental and Conservation Council. Canberra, Australia.
Beaumont, A.R. and M.D. Budd. 1984. High mortality of the larvae of the common mussel at low concerntration of tributyltin. Marine Pollution Bulletin, 15:402-405.
Beaumont, N.J. and R. Tinch. 2003. Cost-effective Reduction of Copper Pollution in the Humber Estuary. The Centre for Social and Economic Research on the Global Environment (CSERGE) Working Paper ECM 03-04. England, United Kingdom. pp. 1-25.
Beveridge, A and W.F. Pickering. 1983. Influence of surfactants on the adsorption of heavy metal ions by clays. Water Research, 17:215-225.
Bilinski, H., S. Kozar and M. Branica. 1976. Adsorption of heavy metal traces on particulate matter in seawater. Colloid and Interface Science, 3:211-231.
Blossom, N. 2006. Copper in the Ocean Environment. American Chemet Corporation. Montana, USA. pp. 1-8.
Bloomfield, C., W.I. Kelso and G. Pruden. 1976. Reactions between metals and humified organic matter. European Journal of Soil Science, 27:16-31.
Bowen, H.J.M. 1985. The handbook of environmental chemistry, Vol. 1, Part D. pp. 1-26. In Hutzinger D. (Ed.) The natural environment and biogeochemical cycles. Springer-Verlag. New York, USA.
Boxall, A.B.A., S.D. Comber, A.U. Conrad, J. Howcroft and N. Zaman. 2000. Inputs, Monitoring and Fate Modelling of Antifouling Biocides in UK Estuaries. Marine Pollution Bulletin, 40:898-905.
Brady R.F. 2000. No more tin: what now for fouling control? Journal of Protective Coatings and Linings, 5:42-46.
Burton, E.D., I.R. Phillips and D.W. Hawker. 2005. Geochemical Partitioning of Copper, Lead, and Zinc in Benthic, Estuarine Sediment Profiles. Journal of Environmental Quality, 34: 263-273.
Cantillo, A.Y. 1998. Comparison of results of mussel watch programs of the United States and France with worldwide mussel watch studies. Marine Pollution Bulletin, 36:712-717.
Cheng, I.J. and T.Z. Chen. 1993. Preliminary study of the macrofouling invertebrate community on a wooden fishing vessel. Journal of the Fish Society of Taiwan, 20:269-271.
Chester, R. and M.J. Hughes. 1967. A chemical technique for the separation of ferro-manganese minerals, carbvonate minerals and adsorbed trace elements form pelagic sediments. Chemical Geology, 2:249-262.
City of Palo Alto’s Environmental Compliance Division. 2005. The Pollution Prevention Plan for the City of Palo Alto’s Regional Water Quality Control Plant. Copper Action Plan Report. Palo Alto, California.
Claisse, D. and C. Alzieu. 1993. Copper contamination as a result of antifouling paint regulations? Marine Pollution Bulletin, 26:395-397.
Cooper, B.S. and R.C. Harris. 1974. Heavy metals in organic phases of river and estuarine sediments. Marine Pollution Bulletin, 5:24-26.
Copper Antifouling and Environment Program (CAEP). 2001. Copper in Antifouling and in the Environment. A Status Report. Geneva, Switzerland. pp. 1-10.
Crawford, R.J., D.H. Harding and D.E. Mainwaring. 1993. Adsorption and coprecipitation of single heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir, 9:3050-3056.
Crecelius, E.A., T.J. Fortman, S.L. Kiesser, C.W. Apts and O.A. Cotter. 1989. Contaminant Loading to Puget Sound from Two Marinas. USEPA NTIS PB90-130709. Seattle Washington, USA. pp. 1-67.
Dai, J.Y., W.Y. Zheng and S.H. Wang. 1997. Joints toxicties of heavy metals and pesticides to Pagrosomus major and Rhabdosargus sarba Larvae. Environmental Science, 9:44-94.
Environment Canada. 1995a. Best Management Practices (BMPs) for marinas and small boatyards in British Columbia. PCA Consultants Ltd. Richmond. British Columbia.
Environment Canada. 1995b. Best Management Practices (BMPs) for the ship and boat building and repairing industry in British Columbia. PCA Consultants Ltd. Richmond. British Columbia.
European Commission. 2000. Assessment of Antifouling Agents in Coastal Environments. Annual Report No. MAS3-CT98-0178. United Kingdom. pp. 1-36.
European Council of the Paint, Printing Ink and Artists' Colours Industry (CEPE) Anti-Fouling Working Group. 2003. Emission Scenario Document On Antifouling Products. pp. 8-15. In Environment Directorate Organisation for Economic Co-Operation and Development (Ed.) Annex II - Provision of biocide leaching rate data for anti-fouling products. A Discussion Document from the Anti-Fouling Working Group of CEPE. April 2003. Organisation for Economic Co-Operation and Development. Paris, France.
Erika, J.A. McCoy. 1995. Boating Pollution and Prevention Tips - Underwater Hull Cleaner's Best Management Practices (BMPs). University of California Sea Grant Extension Program. San Diego, California, USA.
Evans, L.V. 1988. Marine biofouling. pp. 433-453. In Lembi, C.A. and J.R. Walland (Eds.) Algae and Human Affairs. Cambridge University Press. New York, USA.
Evans, S.M., T. Leksono and P.D. McKinnell. 1995. Tributyltin Pollution: A diminisihing problem following legislation limiting the use of TBT-based anti-fouling paints. Marine Pollution Bulletin, 30:14-21.
Evans, S.M. 1999. Tributyltin pollution: the catastrophe that never happened. Marine Pollution Bulletin, 38:629-636.
Evans, S.M., A.C. Birchenough and M.S. Brancato. 2000. The TBT Ban: Out of the Frying Pan into the Fire? Marine Pollution Bulletin, 40:204-211.
Farrington, J.W., E.D. Goldberg, R.W. Risebrough, J.H. Martin and V.T. Bowen. 1983. U.S. “Mussel Watch” 1976-1978: an overview of trace-metal, DDE, PCB, hydrocarbon, and artificial radionuclide data. Environmental Science and Technology, 17:490-496.
Fent, K. 1996. Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26:1-117.
Finlay, J.A. and M.E. Callow. 1997. The toxicity of alkyl amines: The effects pH. Biofouling, 11:19-30.
Finnie, A.A. 2006. Improved estimates of environmental copper release rates from antifouling products. Biofouling, 22:279-291.
Focardi, S., S. Corsolini, S. Aurigi, G. Pecetti and J.C. Sanchez- Hernandez. 2000. Accumulation of butyltin compounds in dolphins stranded along the Mediterranean coasts. Applied Organometallic Chemistry, 14:48-56.
Fossi, M.C. and L. Marsili. 2003. Effects of endocrine disruptors in aquatic mammals. Pure and Applied Chemistry, 75:2235-2247.
Gadde R.R. and H.A. Laitinen. 1974. Studies of Heavy Metal Adsorption by Hydrous Iron and Manganese Oxides. Analytical Chemistry, 46:2022-2026.
Gardiner, J. 1974. The chemistry of cadmium in natural water--II. The adsorption of cadmium on river muds and naturally occurring solids. Water Research, 8:157-164.
Gibbs, P.E., B.E. Spencer and P.L. Pascoe. 1991. The American oyster drill, Urosalpinx cinerea (Gastropoda): Evidence of decline in and imposex-affected population (R. Blackwater, Essex). Journal of the Marine Biological Association of the United Kingdom, 71:827-838.
Goto, R., R. Kado, K. Muramoto and H. Kamiya. 1992. Fatty acids as antifoulants in a marine sponge. Biofouling, 6:61-68.
Gupta, S.K. and K.Y. Chen. 1975. Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environmental Letters, 10:129-158.
Haderlie, E.C. 1984. A brief overview of the effects of macrofouling. pp. 163-166. In Costlow J.D. and R.C. Tipper (Eds.) Marine Biodeterioration: an Interdisciplinary Study. U.S. Naval Institute Press. Annapolis, Maryland, USA.
Hall, L.W. Jr., M.C. Scott and W.D. Killen. 1997. A screening level probabilistic ecological risk assessment of copper and cadmium in the Chesapeake Bay watershed. Report. USEPA Chesapeake Bay Program office. Annapolis, Maryland, USA.
Hall, L.W. Jr and R.D. Anderson. 1999. A Deterministic Ecological Risk Assessment for Copper in European Saltwater Environments. Marine Pollution Bulletin, 38:207-218.
Han, B.C. and T.C. Hung. 1990. Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution, 65:347-362.
Haslbeck, E. and J.A. Ellor. 2005. Investigating tests for antifoulants: variation between laboratory and in situ methods for determining copper release rates from navy-approved coatings. Journal of Protective Coatings and Linings, 8:34-44.
Health Canada. 1994. Registration of Antifouling Coatings. Pest Management Regulatory Agency. Ottawa, Ontario (Canada). pp. 1-12.
Henrikson, A.A. and J.R. Pawlik. 1995. A new antifouling assay method: results from field experiments using extracts of four marine organisms. Journal of Experimental Marine Biology and Ecclogy, 194:157-165.
His, E. and R. Robert. 1987. Comparative effects of two antifouling paints on the oyster Crassostrea gigas. Marine Biology, 95:83-86.
Horiguchi, T., H. Shiraishi, M. Shimizu and M. Motita. 1994. Imposex and organotin compounds in Thais clavigera and T. bronni in Japan. Journal of the Marine Biological Association of the United Kingdom, 74:651-669.
Horiguchi, T., H. Shiraishi, M. Shimizu and M. Motita. 1997. Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, Thais clavigera. Environmental Pollution, 95:85-91.
Hunt, C.D. 1981. Regulation of sedimentary cation exchange capacity by organic matter. Chemical Geology, 34:131-149.
Hyder Consulting Ltd. 2006. Literature Review on the Characteristics and Potential Environmental Impacts of Non-TBT Antifouling Paints. Environmental Impact Assessment Report. Hong Kong. pp. 1-17.
Ingle, M. 2003. Naval Sea Systems Command Antifouling Program. National Paint and Coatings Association International Marine and Offshore Coatings Expo. Washington, D.C., USA. pp. 1-37.
International Maritime Organization (IMO). 2001. AFS conference delegation report. U.S. delegation report on the International Conference on the Control of Harmful Anti-fouling Systems on Ships. London, United Kingdom. pp. 1-2.
International Maritime Organization (IMO). 2002. Anti-fouling systems. Focus on IMO. London, United Kingdom. pp. 1-31.
International Organization for Standardization (ISO). 2000a. Determination of the release rate of biocides from antifouling paints - Part 1: General method for extraction of biocides. ISO 15181-1:2000.
International Organization for Standardization (ISO). 2000b. Determination of the release rate of biocides from antifouling paints - Part 2: Determination of copper-ion concentration in the extract and calculation of the release rate. ISO 15181-2:2000.
Jackson, J.B.C. and L. Buss. 1975. Allelopathy and Spatial Competition among Coral Reef Invertebrates. Proceedings of the National Academy of Sciences of the United States of America, 72:5160-5163.
James, R.O. and M.G. MacNaughton. 1977. The adsorption of aqueous heavy metals on inorganic minerals. Geochimica et Cosmochimica Acta, 41:1549-1555.
Jednacak-Biscan, J. and M. Juracic. 1987. Organic Matter and Surface Properties of Solid Particles in the Estuarine Mixing Zone. Marine Chemistry, 22:257-263.
Jenne, E.A. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn Concentrations in Soils and Water: the Significant Role of Hydrous Mn and Fe Oxides. Advances in Chemistry, 73:337-387.
Jiang T.J. and Niu T. 2006. Effects of heavy metals on superoxide dismutase (SOD) of Crassostrea rivularis. Ecology and Environment, 15:289-294.
Katranitsas, A., J. Castritsi-Catharios and G. Persoone. 2003. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Marine Pollution Bulletin, 46:1491-1494.
Kester, D.R., T.P. O'Connor and R.H. Byrne, Jr. 1975. Solution Chemistry, Solubility, and Adsorption Equilibria of Iron, Cobalt, and Copper in Marine Systems. National Technical Information Service, Springfield VA 22161 as AD-A030 834. Springfield, Virginia USA. pp. 1-13.
Kon-Ya, K., N. Shimidzu, W. Miki and M. Endo. 1994. Indole derivatives as potent inhibitors of larval settlement by the barnacle, Balanus Amphitrite. Bioscience, Biotechnology, and Biochemistry, 58:2178-2181.
Lewis, A.G. 1995. Copper in water and aquatic environments. Report. International Copper Association, Ltd. New York, USA. pp. 1-71.
Lewis, J.A. 1998. Marine biofouling and its prevention on underwater surfaces. Materials Forum, 22:41-61.
Lindner, E. 1993. Dynamic and static exposure tests and evaluations of alternative copper-based antifoulant coatings. Surface Warfare System San Diego Technical Report 1628. San Diego, California, USA. pp. 1-96.
Loganathan, P. and R.G. Bureau. 1973. Sorption of heavy metal ions by a hydrous manganese oxide. Geochimica et Cosmochimica Acta, 37:1277-1293.
Masuoka, S. and Y. Honda. 1992. Antifouling paint. United States Patent, No. 5,116,611.
Mikulic, N., V. Orescanin, T. Legovic and R. Zugaj. 2004. Estimation of heavy metals (Cu, Zn, Pb) input into Punat Bay. Environmental Geology, 46:62-70.
Mizobuchi, S., N. Shimidzu, M. Katsuoka, K. Adachi and W. Miki. 1993. Antifouling substances against the mussel in an octocoral Dendronephthya sp. Japanese Society of Scientific Fisheries, 59:1195-1199.
Millward, G.E. and R.M. Moore. 1982. The Adsorption of Cu, Mn, and Zn by Iron Oxyhydroxide in Model Estuarine Solutions. Water Research, 16:981-985.
Murray, J.W. 1975. The interaction of metal ions at the manganese dioxide-solution interface. Geochimica et Cosmochimica Acta, 39:505-519.
North Sea Task Force. 1993. North Sea Quality Status Report, 1993. Oslo and Paris Commissions. London. Olsen and Olsen, Fredensborg, Denmark. pp. 1-132.
O'Connor, T.P. and G.G. Lauenstein. 2005. Status and trends of copper concentrations in mussels and oysters in the USA. Marine Chemistry, 97:49-59.
Oberdoerster, E. and P. McClellan-Green. 2002. Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Marine Environmental Research, 54:715-718.
Oshurkov, V.V. 1992. Succession and climax in some fouling communities. Biofouling, 6:1-12.
Okieimen, E.F. and J.E. Ebhoaye. 1986. Adsorption behavior of heavy metal ions on cellulose graft copolymers. Journal of Applied Polymer Science, 32:4971-4976.
Okumura, M. and Y. Kitano. 1986. Coprecipitation of alkali metal ions with calcium carbonate. Geochimica et Cosmochimica Acta, 50:49-58.
Posselt, H.S., F.J. Anderson and W.J. Weber, Jr. 1968. Cation Sorption on Colloidal Hydrous Manganese Dioxide. Environmental Science and Technology, 12:1087-1093.
Pulsford, A.L., M. Crampe, A. Langston and P.J. Glynn. 1995. Modulatory effects of disease, stress, copper, TBT and vitamin E on the immune system of flatfish. Fish and Shellfish Immunology, 5:631-643.
Ranke, J. and B. Jastorff. 2000. Multidimensional risk analysis of antifouling biocides. Environmental Science and Pollution Research, 7:105-114.
Ruiz, J.M., G.W. Bryan and P.E. Gibbs. 1995. Acute and chronic toxicity of tributhltin (TBT) to pediveliger larvae of the bivalve Scrobicularia plana. Marine Biology, 124:119-126.
Saad, M.A.H. and N.B. Badr. 2003. Copper speciation in the sediments of the polluted Eastern Harbor of Alexandria, Egypt. pp. 417-426. In Bunch, M.J., V.M. Suresh and T.V. Kumaran (Eds.) Proceedings of the Third International Conference on Environment and Health. Department of Geography, University of Madras and Faculty of Environmental Studies, York University. Chennai, India.
Sadiq, M. 1992. Toxic Metal Chemistry in Marine Environments. Marcel Dekker. New York, USA. pp. 1-390.
Schiff, K., D. Diehl and A. Valkirs. 2004. Copper emissions from antifouling paint on recreational vessels. Marine Pollution Bulletin, 48:371-377.
Schottle, R. and P. Brown. 2007. Copper Loading Assessment from In-Water Hull Cleaning following Natural Fouling, Shelter Island Yacht Basin, San Diego Bay, San Diego, California. pp. 1-10. In Wade Watson, P.E. (Ed.) PORTS 2007: 30 Years of Sharing Ideas...1977-2007. Ports and Harbors Committee of the Coasts, Oceans, Ports, and Rivers Institute (COPRI) of the American Society of Civil Engineers. San Diego, California, USA.
Seligman, P.F. and J.W. Neumeister 1983. The United States of America as represented by the Secretary of the Navy, assignee. In situ leach measuring system. U.S. Patent 4375451.
Sittig, M. 1976. Environmental Sources and Emissions Handbook. Noyes Data Corporation, Park Ridge. New Jersey, USA. pp. 1-523.
Spathariotis, E. and C. Kallianou. 2001. Adsorption of copper, zinc, and cadmium on clay fraction of two acid soils: Surface complexation modeling. Communications in Soil Science and Plant Analysis, 32:3185-3205.
Stover, R.C., L.E. Sommers and D.J. Silviera. 1976. Evaluation of Metals in Wastewater Sludge. Journal Water Pollution Control Federation, 48:2165-2175.
Smith, K.L., G.W. Bryan and J.L. Harwood. 1985. Changes in endogenous fatty acids and lipid synthesis associated with copper pollution in Fucus spp. Journal of Experimental Botany, 36:663-669.
Tanguy, A., N.F. Castro, A. Marhic and D. Moraga.1999. Effects of an organic pollutant (tributyltin) on genetic structure in the Pacific Oyster Crassostrea gigas. Marine Pollution Bulletin, 38:550-559.
Taylor, M.R. and P.T.C. Horrison. 1999. Ecological effects of endocrine disruption: Current evidence and research priorities. Chemosphere, 39:1237-1248.
Tessler, A., P.G.C. Campbell and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51:844-851.
Tsurumi, K. and N. Fusetani. 1998. Effects of early fouling communities formed in the field on settlement andmetamorphosis of cyprids of the barnacle, Balanus amphitrite darwin. Biofouling, 12:119-131.
U.S. Environmental Protection Agency (USEPA). 1998. Federal Register, Vol. 63, No. 164, Uniform National Discharge Standards for Vessels of the Armed Forces. Department of Defense. Washington, D.C., USA. pp. 45297-45335.
Valkirs, A.O., B.M. Davidson, L.L. Kear, R.L. Fransham, A.R. Zirino and J.G. Grovhoug. 1994. NRaD Technical Document 2662, Environmental Effects from In-Water Hull Cleaning of Ablative Copper Antifouling Coatings. Naval Command, Control and Ocean Surveillance Center. RDT&E Division. San Diego, California, USA. pp. 1-82.
Valkirs, A.O., P.F. Seligman, E. Haslbeck and J.S. Caso. 2003. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies. Marine Pollution Bulletin, 46:763-779.
Van Der Weijden, C.H., M.J.H.L. Arnoldus and C.J. Meurs. 1977. Desorption of trace metal from suspended material in the Rhine estuary. Netherlands Journal of Sea Research, 11:130-145.
Veltman, C. 2002. A whale of a paint. Coatings World (USA), 7:24-25.
Waldock, M.J. and J.E. Thain. 1983. Shell thickening in Crassostrea gigas: Organotin antifouling or sediment induced? Marine Pollution Bulletin, 14:411-415.
Warnken, J., R.J.K. Dunn and P.R. Teasdale. 2004. Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Marine Pollution Bulletin, 49:833-843.
Watermann, Dr. B., BSc. L. Weaver and K. Hass. 2004. Feasibility Study for New Eco-labels According to DIN EN ISO 14024 for Select Product Groups, Sub-project 3: Biocide-free Antifouling (AF) Products. Federal Environmental Agency. Berlin, Germany. pp. 1-61.
Whitehead, R. 2005. The UK pesticide guide 2005. CABI Publishing. United Kingdom. pp. 1-612.
Wilson, S.P., M. Ahsanullah and G.B.Thompson. 1993. Imposex in Neogastropods: An Indicator of Tributyltin Contamination in Eastern Australia. Marine Pollution Bulletin, 26:44-48.
Wood, W.P. 1997. Special report on environmental endocrine disruption: Effects assessment and analysis. USEP Agency. Washington, USA. pp. 1-111.
Woods Hole Oceanographic Institution (WHOI). 1952. History of fouling prevention. In Marine fouling and its prevention . Prepared for Bureau of Ships, Navy Department by Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA. United States Naval Institute. Annapolis, Maryland, USA.
Woods Hole Oceanographic Institution (WHOI). 1952. Marine Fouling and its Prevention. U.S. Naval Institute. Annapolis, Maryland, USA. pp. 1-388.
Yamamoto, H., C.G. Satuito, M. Yamazaki, K. Natoyama, A. Tachibana and N. Fusetani. 1998. Neurotransmitter blockers as antifoulants against planktonic larvae of the barnacle Balanus amphitrite and the mussel Mytilus galloprovincialis. Biofouling, 13:69-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔