(3.236.222.124) 您好!臺灣時間:2021/05/11 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭紹宏
論文名稱:台灣彰化沿海潮間帶之螻蛄蝦Austinogebiaedulis(Ngoc-HoandChan,1992)的棲地、行為與生態之研究
論文名稱(外文):The study of habitat, behavior and ecology of mud shrimp Austinogebia edulis (Ngoc-Ho and Chan, 1992) in the intertidal zone along the coast of Changhua, Taiwan.
指導教授:黃將修蔡明利蔡明利引用關係
指導教授(外文):Hwang, Jiang-ShiouTsai, Min-Li
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:170
中文關鍵詞:食用螻蛄蝦巢穴型態金屬元素
外文關鍵詞:Austinogebia edulisburrow morphologytrace metals
相關次數:
  • 被引用被引用:3
  • 點閱點閱:565
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食用螻蛄蝦 (Austinogebia edulis) 在台灣主要的分布在中西部沿海的潮間帶地區,在彰化地區為傳統的小吃,但長久以來,其分類地位並不明確,直到1992年才被修定為一新的物種,並在2001年歸類為新的一屬,奧氏螻蛄蝦屬 (Austinogebia)。迄今關於食用螻蛄蝦在生物生態學上的瞭解仍非常有限,例如族群分布的特性、生殖行為的探討以及巢穴結構的特性等等皆有待探索。此外,食用螻蛄蝦的分布鄰近於彰濱工業區以及部分高污染溪流出海口,環境中存在的污染物很可能因而蓄積於體內,食用安全也有待評估。
因此本研究選定彰化沿海食用螻蛄蝦族群主要分布之區域進行次族群密度與分布的調查及生物學特徵之量測,藉以比較各次族群結構。並以mtCOI基因片段序列推估各次族群遺傳結構的差異。另進行巢穴結構之量測及分析以推測穴居的行為模式。此外,也藉由分析沈積物中各相態重金屬組成分布與生物體內各組織的重金屬含量,探討沈積環境的污染狀況與生物體內重金屬含量之關係,並評估螻蛄蝦食用的安全性。
研究結果顯示食用螻蛄蝦,受底質環境的阻隔而形成不連續性的分布。顯著不同的族群結構,分屬不同時期的建立的族群,其原因可能來自於多變的棲地環境造成部分族群滅亡,又藉由其他穩定族群的個體遷移而有新族群興起。遺傳結構分析發現,較大族群內存在獨特的haplotype,顯示為較古老的族群,為新族群興起的提供者。各次族群間之遺傳分化指數(FST) <0.05及基因交流指數 (Nm)>1,顯示次族群間無明顯的遺傳分化,並存在頻繁的基因交流,推測食用螻蛄族群雖為不連續性的分布,造成交配上的隔離,但可藉幼生的浮游期達到族群間的交流。
巢穴的型態主要為簡單Y型,為典型的螻蛄蝦巢穴形式。Y型結構外,並具有數個分支,分支的數量可反應在食用螻蛄蝦對於空間的利用,當巢穴內徑與蝦體體型的比例越小,空間越緊密時,會有分支密度增加的傾向。雌雄蝦的巢穴亦有差異,雄蝦巢穴具有較多的分支,雌蝦則會挖掘較深的巢穴。部分連結的巢穴,發現皆為雌雄成對的螻蛄蝦,或許與交配行為有關,但發現的數目不多,推測應非主要的交配方式。
生物體內之重金屬總濃度依序為Fe > Mn > Cu > Zn > Ni > Pb > Cr > Co > Cd。重金屬在的蓄積量因金屬種類及生物組織之不同而有所差異。Fe、Mn及Pb主要累積於外骨骼;Cd易累積於肝胰臟;Cu易累積於鰓及肝胰臟;而Co、Cr、Ni及Zn在各組織之累積無顯著差異。沈積物中,除了Cu及Mn主要由非殘存相組成之外,其餘各項重金屬都主要以殘存相存在(60%以上),也因此螻蛄蝦生物體內相對具有較高濃度之Cu及Mn。螻蛄蝦體內的的重金屬含量皆低於國際組織所制定之食用安全標準,因此並無食用上之疑慮。
The mud-shrimp, Austinogebia edulis (Ngoc-Ho & Chan, 1992), is sedentary with a deep burrow in mudflat and mainly found on the coast of western Taiwan. Its taxonomy was unclear until that it was revised as one new species in 1992, and then removed to new genus Austinogebia in 2001. Since this species is a locally traditional sea food in Changhua, there was poor understanding in their distribution pattern, population structure, reproductive behavior and the nest structure. In addition, the area A. edulis inhabiting is near Changbin industrial park with high pollution estuaries. A. edulis, as a food, the risk should be estimated.
In this study, a main habitat of Austinogebia edulis in Changhua, Taiwan, was studied. The topics included the distribution pattern, population genetic structure, the nest structure associated with sediment grain size, and the heavy metal pollutants in sediment and tissue of A. edulis were examined.
The result of this study shows that the distribution patterns of the mud shrimp were patchy. The distribution of this mud shrimp may be isolated by the different sediment of environment. Some of these subpopulations may persist and some of them may extinct depended on the steadiness habitat. The environmental change often caused some populations became extinct with the rise of some new subpopulations. The genetic structure shows that there were some unique haplotypes in the larger and older population. The genetic divergence index (FST ) <0.05 and the gene flow (Nm) > 1 show that there is no significant genetic divergence, and the gene flow among subpopulations. Sedentary life style have limited the interbreeding of individuals among patches. Among patches, A. edulis can be dispersal only during the short period of planktonic larval stage to facilitate gene flow.
Simple Y shape was the typical burrow of A. edulis. It was similar to the typical nest structure of Upogebiid shrimps. The chamber density increased with smaller the ratio of the burrow’s diameter and body size indicating narrower space for A. edulis. Also there is a difference in the nest of the male and female shrimp. The male shrimp's nest has more branches. On the other hand, the female shrimp will excavate the deeper nest. It was relatively few cases that the pair male and female interconnected with their burrows were noticed. It is unclear whether this interconnection was the main way for mating.
The total concentrations of heavy metals in A. edulis were measured and their concentrations were as Fe > Mn > Cu > Zn > Ni > Pb > Cr > Co > Cd. The metal concentrations were significantly different according to heavy metal species and the tissues of A. edulis. Concentrations of Fe, Mn, and Pb were primarily found in the exoskeleton; Cd were mainly present in the hepatopancreas; Cu were mainly present in the gill and hepatopancreas; Co, Cr, Ni and Zn were evenly distributed in each tissue. In the sediment, with the exception of Cu and Mn, more than 60% of the metals studied were present in the residual fraction. In contrast, Cu and Mn were dominant in the nonresidual fraction. This indicated that the Cu and Mn concentrations in A. edulis were relatively higher than those of the other metals. The metal concentrations in the mud shrimp, A. edulis detected in the present study were all below the food safety level of USFDA, UKFSC and EU.
謝辭........................... i
中文摘要......................... ii
英文摘要.........................iv
目錄...........................vii
表目錄..........................ix
圖目錄..........................xii
附錄...........................xxiv
第一章 緒論.......................1
第二章 主題.1 食用螻蛄蝦族群分佈形式與族群結構變動之探討
2-1 文獻回顧.......................9
2-2 材料與方法......................12
2-3 結果.........................18
2-4 討論.........................27
第三章 主題2. 食用螻蛄蝦巢穴結構之探討
3-1 文獻回顧 ......................33
3-2 材料與方法......................37
3-3 結果.........................39
3-4 討論.........................46
第四章 主題3. 食用螻蛄蝦體內重金屬累積量與沈積環境之探討
4-1 文獻回顧 ......................53
4-2 材料與方法......................59
4-3 結果.........................62
4-4 討論.........................68
參考文獻 ........................73
表............................85
圖............................107
附錄...........................168
全國環境水質監測資訊網 (2009). 行政院環境保護署。http://wqshow.epa.gov.tw/。
林鳳嬌 (1995). 台灣美食螻蛄蝦(鹿港蝦猴)之生物學研究。國立台灣海洋大學漁業科學研究所碩士論文,1-79。
林鳳嬌 (2004). 台灣產海蛄蝦之分類及分佈研究。國立台灣海洋大學漁業科學研究所博士論文,1-203。
范光龍 (1988). 台灣附近的海域。科學月刊,19: 348-351頁。
陳弘成,翁文舜,王南雄,吳雅琪 (2000). 台灣常見貝類體內重金屬含量之比較研究。台大漁推,12: 19-26。
陳玄? (2008). 彰濱海岸黑腹濱鷸胸羽中之鎘、銅與鉛含量。東海大學環境科學研究所碩士論文,1-59。
港灣技術研究中心 (2009). 交通部運輸研究所。http://www.ihmt.gov.tw/。
黃將修,彭紹宏,魏翠萍,劉景祥 (2003). 彰化濱海工業區開發工程92年度施工期間環境影響調查螻蛄蝦監測調查研究第一至四季報告。經濟部工業局,1-36。
彰化縣統計要覽 (2009). 彰化縣政府主計處。http://www.chcg.gov.tw/accounting/07static/static01.asp?cate_id=26。


Ahyong, S. T., and D. O'Meally. 2004. Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raffles Bull. Zool. 52: 673-693.
Amdur, M. O., J. Doull, and C. D. Klaassen. 1993. Toxicology, McGraw-Hill 4th, N. Y.
Atkinson, R. J. A., and C. J. Chapman. 1984. Resin casting: a technique for investigating burrows in sublittoral sediments. Prog. Underwat. Sci. 9: 15-25.
Balls, P. W. 1989. The partition of trace metals between dissolved and particulate phases in European coastal studies. Netherlands J. Sea Reach. 23: 7-14.
Balss, H. 1957. Decopoda. Dr. H. G. Bronn's Klassen und Ornungen des Tierreichs. 7: 1505-1672.
Bhanoori, M., and G. Venkateswerlu. 2000. In vivo chitin-cadmium complexation in cell wall of Neurospora crassa. Biochimica et Biophysica Acta. 1523: 21-28.
Borradaile, L. A. 1903. On the classification of the Thalassinidea. Ann. Mag. Nat. Hist. 12: 534-551,638.
Bowman, T. E., and L. G. Abele. 1982. Classification of the recent crustacea. In the biology of crustacean. Vol.1. Systematics, The Fossil Record, and Biogeography. (Ed. L. G. Abele). pp. 1-27. Academic Press, N. Y.
Branch, G. M., and A. Pringle. 1987. The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J. Exp. Mar. Biol. Ecol. 107: 219-235.
Broeg, K., S. Zander, A. Diamant, W. Korting, G. Kruner, I. Paperna, and H. von Westernhagen .1999. The use of fish metabolic, pathological and parasitological indices in pollution monitoring-1. North Sea. Helgoland Mar. Res. 53: 171-194.
Bryan, G. W. 1971. Effects of heavy metals (other than mercury) on marine and estuarine organisms. Proc. R. Soc. Lond., B, Biol. Sci. 177: 389-410.
Burkenroad, M. D. 1963. The evolution of the Eucarida (Crustacea: Eumalacostraca) in relation to the fossil record. Tulane Stud. Geol. 2: 3-16.
Candisani, L. C., P. Y. G. Sumida, and A. M. S. Pires-Vanin. 2001. Burrow morphology and mating behaviour of the thalassinidean shrimp Upogebia noronhensis. J. Mar. Biolog. Assoc. U.K. 81: 799-803.
Carlini, D. B., J. Manning, P. G. Sullivan, and D. W. Fong. 2009. Molecular genetic variation and population structure in morphologically differentiated cave and surface populations of the freshwater amphipod Gammarus minus. Mol. Ecol. 18: 1932–1945.
Carver, R. E. 1971. Procedures in Sedimentary Petrography. Wiley-Interscience. N. Y.
Castro, P. 1978. Settlement and habitat selection in the larvae of Echinoecus pentagonus (A. Milne Edwards), a brachyuran crab symbiotic with sea urchins. J. Exp. Mar. Biol. Ecol. 34: 259-270.
Castro, P., and M. E. Huber. 2007. Between the tides. In: Marine Biology, 6th. McGraw-Hill. N. Y.
Chlopecka, A. 1996. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Sci. Total Environ. 188: 71-270.
Chu, K. H., J. Tong, and T. Y. Chan. 1999. Mitochondrial cytochrome oxidase I sequence divergence in some Chinese species of Charybdis (Crustacea: Decapoda: Portunidae). Biochem. Syst. Ecol. 27: 461-468.
Coelho, V. R., R. A. Cooper, and S. D. Rodrigues. 2000a. Burrow morphology and behavior of the mud shrimp Upogebia omissa (Decapoda: Thalassinidea: Upogebiidae). Mar. Ecol. Prog. Ser. 200: 229-240.
Coelho, V. R., A. B. Williams, and S. D. Rodrigues. 2000b. Trophic strategies and functional morphology of feeding appendages, with emphasis on setae, of Upogebia omissa and Pomatogebia operculata (Decapoda: Thalassinidea: Upogebiidae). Zool. J. Linn. Soc. 130: 567-602.
Crisp, D. J. 1974. Factors influencing settlement of marine invertebrate larvae. In: P. T. Grant and A. M. Mackie, eds. Chemoreception in marine organisms. p. 177-265, Academic Press, N. Y.
Dworschak, P. C. 1981. Pumping Rates of the Burrowing Shrimp Upogebia pusilla (Petagna) (Decapoda: Thalassinidea). J. Exp. Mar. Biol. Ecol. 52: 25-35.
-----, 1983. The biology of Upogebia pusilla (Petagna) (Decapoda, Thalassinidea). I. The burrows. Mar. Ecol. 4: 19-43.
-----, 1987a. The biology of Upogebia pusilla (Petagna) (Decapoda, Thalassinidea). II. Environments and zonation. Mar. Ecol. 8: 337-358.
-----, 1987b. Burrows of Mediterranean Decapoda. Invest. Peso. 51: 264.
-----, 1987c. Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thalassinidea). Invest. Peso. 51: suppl. 1.
-----, 2000. Global diversity in the Thalassinidea (Decapoda). J. Crust. Biol. 20: 238-245.
Excoffier, L., and P. E. Smouse. 1994. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parimony. Genetics 136: 343-359.
Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA data. Genetics 131: 479-491.
Farrow, F. E. 1971. Back-reef and lagoonal environments of Aldabra Atoll destinguished by crustacean burrows. Symp. zool. Soc. Lond. 28: 455-500.
Felder, D. L., and R. B. Griffis. 1994. Dominant infaunal communities at risk in shoreline habitats: burrowing Thalassinid Crustacea, OCS reports U S Minerals Management Service 9: 4-7.
Felder, D. L., J. L. Staton, and R. B. Griffis. 1990. Relationships of burrow morphology to population structure in the estuarine ghost shrimp Lepidopthalmus louisianensis (Decapoda, Thalassinidea). Am. Zool. 30: 137A.
Folk, R. L. 1968. Petrology of Sedimentary Rocks. Hemphill, Austin.
-----, 1974. Petrology of sedimentary rocks. Hemphill, Austin.
Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I form diverse metazoan invertebrates. Mol. Marine Biol. Biotechnol. 3: 294-299.
Forbes, A. T. 1973. An unusual abbreviated larval life in the estuarine burrowing prawn Calianassa Kraussi (Crustacea: Decapoda: Thalassinidea). Mar. Biol. 22: 361-365.
Forstner, U., and G. T. W. Wittmann, 1979. Metal Pollution in the Aquatic Environment, Spring-Verlag, Berlin, pp. 486.
Franca, S., C. Vinagre, I. Cacador, and H. N. Cabral. 2005. Heavy metal concentration in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Mar. Pollut. Bull. 50: 993-1018.
Frey, R. W., and J. D. Howard. 1975. Endobenthic adaptations of juvenile thalassinidean shrimp. Bull. Geol. Soc. Den. 24: 283-297.
Futuyma, D. J. 1998. The geography of evolution. In: Evolutionary Biology, 3rd ed. Sinauer Associates, Inc., Sunderland, Massachusetts. U. S. A.
Gemma R. 1997. Extraction procedure for the determination of heavy metals in contaminated soil and sediment. Talanta 46: 449-455.
Griffis, R. B. 1988. Behavioral interactions between burrowing shrimp: effects on distribution of sympatric thalassinids. Am. Zool. 28: 179A.
Griffis, R. B., and T. H. Suchanek. 1991. A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Mar. Ecol. Prog. Ser. 79: 171-813.
Hall-Spencer, J. M., and R. J. A. Atkinson. 1999. Upogebia deltaura (Crustacea: Thalassinidea) in Clyde Sea maerl beds, Scotland. J. Mar. Biolog. Assoc. U.K. 79: 871-880.
Hamed, M. A., and A. M. Emara. 2006. Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. J. mar. syst. 60: 220-234.
Hanski, I. 1998. Metapopulation dynamics. Nature 396: 41-49.
Harrison, M. K., and B. J. Crespi. 1999. Phylogenetics of Cancer crabs (Crustacea: Decapoda: Brachyura). Mol. Phylogenet. Evol. 12: 186-199.
Hung, T. C., A. Chuang, S. J. Wu, and C. C. H. Tsai. 1990. Relationships among the species and forms of copper and biomass along the Erhjin Chi coastal water. Acta Oceanogr. Taiwan 25: 65-76.
Imeson, R. and J. Van Den Bergh. 2004. A Bioeconomic Analysis of a Shellfishery: The Effects of Recruitment and Habitat in a Metapopulation Model. Environ. Resour. Econ. 27: 65-86.
Itani, G. and T. Uchino. 2003. Burrow morphology of the goby Taenioides cirratus. J. Mar. Biol. Assoc. U.K. 83: 881-882.
Jackson, G. D., and J. H. Choat. 1992. Growth in tropical cephalopods: An analysis based on statolith microstructure. Can. J. Fish. Aquat. Sci. 49: 218-228.
Jackson, G. D., R. A. Alford, and J. Choat. 2000. Can length frequency analysis be used to determine squid growth? - An assessment of ELEFAN. ICES J. Mar. Sci. 57: 948-954.
Jeng, M. S., W. L. Jeng, T. C. Hung, C. Y. Yeh, R. J. Tseng, P. J. Meng, and B. C. Han. 2000. Mussel Watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98. Environ. Pollut. 110: 207-215.
Kabata-Pendias, A. 1993. Behavioral properties of trace metals in soils. Appl. Geochem. 2: 3-9.
Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and plants, CRC Press, Baca Raton, FL. 2nd edn, pp. 365.
Kargin, F; A. Donmez, H. Y. Cogun. 2001. Distribution of heavy metals in different tissues of the shrimp Penaeus semiculatus and Metapenaeus monocerus from the Iskenderun Gulf, Turkey: Seasonal variations. Bull. Environ. Contam. Toxicol. 66: 102-109.
Keenan, C. P., P. J. F. Davie and D. L. Mann, 1998. A revision of the genus Scylla de Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae). Raffles Bull. Zool. 46: 217-245.
Kilada, R. W., D. Roddick, and K. Mombourquette. 2007. Age Determination, Validation, Growth and Minimum Size of Sexual Maturity of the Greenland Smoothcockle (Serripes groenlandicus, Bruguiere, 1789) in Eastern Canada. J. Shellfish Res. 26: 443-450.
Kingman, J. F. C. 1982. The coalescent. Stochast. Proc. Appl. 13: 235-248.
Kinoshita, K. 2002. Burrow structure of the mud shrimp Upogebia major (Decapoda: Thalassinidea: Upogebiidae). J. Crustac. Biol. 22: 474-480.
Kinoshita, K., and G. Itani. 2005. Interspecific differences in the burrow morphology between the sympatric mud shrimps, Austinogebia narutensis and Upogebia issaeffi (Crustacea: Thalassinidea: Upogebiidae). J. Mar. Biolog. Assoc. U.K. 85: 943-947.
Kinoshita, K., M. Wada, K. Kogure, and T. Furota. 2008. Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major (Crustacea: Thalassinidea). Mar. Biol. 153: 277-283.
Kleemann, K. K. 1984. Lebensspuren von Upogebia operculata (Crustacea, Decapoda) in karibischen Steinkorallen (Madreporaria, Anthozoa). Beitr. Palaontol. Osterr. 11: 35-57.
Kneer, D., H. Asmus, and J. A. Vonk. 2008. Seagrass as the main food source of Neaxius acanthus (Thalassinidea: Strahlaxiidae), its burrow associates, and of Corallianassa coutierei (Thalassinidea: Callianassidae). Estuar. Coast. Shelf Sci. 79: 620-630.
Knight-Jones, E. W., J. H. Bailey and M. J. Isaac. 1971. Choice of algae by larvae of Spirorbis, especially of S. spirorbis. J. Mar. Biolog. Assoc. U.K. 53: 439-451.
Kokovides, K., M. Loizidou, K. J. Harhlamabous, and T. Moropoulou. 1992. Environmental study of the Marines Part I: A study on the pollution in marinas area. Environ. Technol. 13: 239-244.
Lapedes, D. N. 1974. Dictionary of scientific and technical terms. McGraw-Hill, N. Y.
Leija Tristan, A., and S. I. Salavar Vallejo. 1991. Progebiophilus bruscai (Isopoda: Bopyridae) parasitizing the shrimp Upogebia dawsoni (Thalassinoidea: Upogebiidae), in Baja California Sur, Mexico. Rev. Biol. Trop. 39: 1-5.
Li, H. Y., F. J. Lin, B. K. K. Chan, and T. Y. Chan. 2008. Burrow morphology and dynamics of mud shrimp in Asian soft shores. J. Zool. 274: 301-311.
Lin, S., and I. J. H. Hsieh. 1999. Occurrences of green oyster and heavy metals contaminant levels in the Sien-San Area, Taiwan. Mar. Pollut. Bull. 38: 960-965.
Lind, Y., A. W. Glynn, J. Engman and L. Jorhem. 1995. Bioavailability of cadmium from crab hepatopancreas and mushroom in relation to inorganic cadmium. A 9-Week Feeding Study in Mice. Food Chem. Toxicol. 33: 667-673.
Liu, H. T. H., D. Kneer, H. Asmus, and H. Ahnelt. 2008. The feeding habits of Austrolethops wardi, a gobiid fish inhabiting burrows of the thalassinidean shrimp Neaxius acanthus. Estuar. Coast. Shelf Sci. 79: 764-767.
Macdonald, J. D., R. B. Pike, and D. I. Williamson. 1957. Larvae of the British species of Diogenes, Pagurus, Anapagurus and Lithodes (Crustacea, Decapoda). Proc. Zool. Soc. London 128: 209-257.
Macginitie, G. E. 1930. The natural history of the mud shrimp Upogebia pugettensis (Dana). Ann. Mag. Nat. Hist. 6: 36-44.
-----, 1934. The natural history of Callianassa californiensis Dana. Am. Midl. Nat. 15: 166-177.
-----, 1968. Natural history of marine animals. McGraw-Hill, N. Y.
Maiz, I., M. V. Esnaola, and E. Millan.1997. Evaluation of heavy metals availability in the contaminated soils by a short sequential extraction procedure. The Science of the Total Environment. 206: 107-115.
Manning, R. B. 1987. Notes on western Atlantic Callianassidae (Crustacea: Decapoda: Thalassinidea). Proceedings of the Biological Society of Washington. Washington DC. 100: 386-401.
Martin, J. W., and G. E. Davis. 2001. An updated classification of the recent crustacea. Nat. Hist. Mus. Los Angel Cty. Sci. Ser. 39: 1-124.
Molles, M. C. Jr. 2005. Ecology: concepts and application 3rd ed. McGraw-Hill Co. N.Y.
Monod, T. 1927. Sur le Crustace auquel le Cameroun doit son nom (Calianassa turnerana White). Bull. Mus. Natl. Hist, Paris. 33: 80-85.
Munguia, P., C. Mackie, and D. R. Levitan. 2007. The influence of stage-dependent dispersal on the population dynamics of three amphipod species. Oecologia 153: 533-541.
Nei, M. 1987. Molecular Evolution Genetics. Columbia Univ. Press, N. Y.
Nei, M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, N.Y.
Nei, M., and F. Tajima. 1983. Maximum likelihood estimation of number of nucleotide substitution from restriction site data. Genetica 105: 207-217.
Ngoc-Ho, N. 2001. Austinogebia, a new genus in the Upogebiidae and rediagnosis of its close relative, Gebiacantha Ngoc-Ho, 1989 (Crustacea: Decapoda: Thalassinidea). Hydrobiologia 449: 47-58.
Ngoc-Ho, N., and T.-Y. Chan. 1992. Upogebia edulis, new species, a mud-shrimp (Crustacea : thalassinides: Upogebiidae) from Taiwan and Vietnam, with a note on polymorphism in the male first pereiopod. Raffles Bull. Zool. 40: 33-43.
Nickell, L. A., and R. J. A. Atkinson. 1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar. Ecol. Prog. Ser. 128: 181-197.
Nriago, J. O., and J. M. Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–140.
Nybakken, J. and M. Bertness. 2003. Marine biology. Pearson Ed., San Francisco.
Orsini, L., J. Corander, A. Alasentie, and I. Hanski. 2008. Genetic spatial structure in a butterfly metapopulation correlates better with past than present demographic structure. Molecular ecology, 2008 Jun, 17(11): 2629-42. Epub: 2008 May 05.
Ott, J. A., B. Fuchs, R. Fuchs, and A. Malasek. 1976. Observations on the biology of Callianassa stebbingi Borrodaille and Upogebia litoralis Risso and their effect upon the sediment. Senckenb. Marit. 8: 61-79.
Paez-Osuna, F., and L. Tron-Mayen. 1995. Distribution of heavy metals in tissues of the shrimp Penaeus californiensis from the northwest coast of Mexico. Bull. Environ. Contam. Toxicol. 55: 209-215.
Paez-Osuna, F., and L. Tron-Mayen. 1996. Concentration and distribution of heavy metals in tissues of wild and farmed shrimp Penaeus vannamei from the northwest coast of Mexico. Environ. Int. 22: 443-450.
Paez-Osuna, F., R. Perez-Gonzalez, G. Izaguirre-Fierro, H. M. Zazueta-Padilla and L. M. Flores-Campana. 1995. Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican Pacific coast. Environ. Pollut. 90: 163-170.
Pearse, A. S. 1945. Ecology of Upogebia affinis. Ecology 26: 303-305.
Pemberton, G. S., M. J. Risk, and D. E. Buckley. 1976. Supershrimp: Deep Bioturbation in the Strait of Canso, Nova Scotia. Science 192: 790-791.
Peng, S. H., J. S. Hwang, T. M. Hsiung, and M. Y. Hwang. 2004. Effects of four heavy metals on toxicity and feeding behavior of soft coral (Subergorgia suberosa). J. Oceanogr. Taiwan Strait 23: 293-301.
Pinn, E. H., R. James, A. Atkinson, and A. Rogerson. 1998. Particle size selectivity and resource partitioning in five species of Thalassinidea (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 169: 243-250.
Pohl, M. E. 1946. Ecological observations on Callianassa major Say at Beaufort, North Carolina. Ecology 27: 71-80.
Poore, G. C. B. 1994. A phylogeny of the families of Thalassinidea (Crustacea: Decapoda) with keys to families and genera. Mem. Mus. Vic. 54: 79-120.
Pourang, N. and G. Amini. 2001. Distribution of trace elements in tissues of two shrimp species from Persian Gulf and effects of storage temperature on elements transportation. Water Air Soil Pollut. 129: 229-243.
Pundir, R., and A. B. Saxena. 1992. Chronic toxic exposure of cadmium on the pituitary gland of fish Puntius ticto and pattern of recoupment. J. Environ. Biol. 13: 69-74.
Rainbow, P. S. 2002. Trace metal concentrations in aquatic invertebrates: why and so what? Environ. Pollut. 120: 497-507.
Reis, C. S., and R. Fernandes. 2002. Growth observations on Octopus vulgaris Cuvier, 1797 from the Portuguese waters: Growth lines in the vestigial shell as possible tools for age determination. Bull. Mar. Sci. 71: 1099-1103.
Roberts, M. H., Jr., J. E. Warinner, C. F. Tsai, D. Wright, and L. E. Cronin. 1982. Comparison of estuarine species sensitivities to three toxicants. Arch. Environ. Contam. Toxicol. 11: 681-692.
Rodrigues, S. A. 1966. Estudos sobre Callianassa: sistematica, biologia e anatomia. Ph. D. dissertation. Univ. Sao Paulo.
-----, 1971. Mud shrimps of the genus Callianassa Leach from the Brazilian coast (Crustacea, Decapoda). Arq. Zool. 20: 191-223.
-----, 1983. Aspectos da biologia de Thalassinidea do Atlantico tropical americano. Publs. Inst. de Biociencias da Univ. de Sao Paulo.
Rowden, A. A., and M. B. Jones. 1995. The burrow structure of the mud shrimp Callianassa subterranea (Decapoda: Thalassinidea) from the North Sea. J. Nat. Hist. 29: 1155-1165.
Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497.
Schaefer, N. 1970. The functional morphology of the fore-gut of 3 species of decapod Crustacea: Cyclograpsus punctatus Milne Edwards, Eiogenes brevirosris Stimpson, and Upogebia africana Ortmann. Zool. Afr. 5: 309-326.
Schubart, C. D., R. Diesel and S. B. Hedges. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363-365.
Scott, P. J. B., H. M. Reiswig, and B. M. Marcotte. 1988. Ecology, functional morphology, behaviour, and feeding in coral- and sponge-boring species of Upogebia (Crustacea: Decapoda: Thalassinidea). J. Can. Zool. 66: 483-495.
Shinn, E. A. 1968. Burrowing in recent lime sediments of Florida and the Bahamas. J. Paleont. 42: 879-894.
Shy, J.-Y., and T.-Y. Chan. 1996. Complete larval development of the edible mud shrimp Upogebia edulis Ngoc-ho & Chan, 1992 (Decapoda, Thalassinidea, Upogebiidae) reared in the laboratory. Crustaceana 69: 175-186.
Slatkin, M. 1985. Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16: 394-430.
Stevens, B. A. 1928. Callianassidae from the West Coast of North America. Publ. Puget Sound Biol. Stn. 6: 315-369.
Stewart, J., and S. J. Kennelly. 2000. Growth of the scyllarid lobsters Ibacus peronii and I. chacei. Mar. Biol. 136: 921-930.
Strasser, C. A. 2008. Metapopulation dynamics of the softshell clam, Mya arenaria. Ph. D. dissertation. Univ. San Diego.
Suchanek, T. H. 1983. Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. J. Mar. Res. 41: 281-298.
-----, 1985. Thalassinid shrimp burrows: ecological significance of species-specific architecture. Proc. 5th Int. Coral Reef Congr., Papeete, Tahiti. 5: 205-210.
Suchanek, T. H., and P. L. Colin. 1986. Rates and effects of bioturbation by invertebrates and fishes at Enewetak and Bikini Atolls. Bulll. Mar. Sci. 38: 25-34.
Swinbanks, D. D., and J. L. Luternauer. 1987. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. J. Paleontol. 61: 315-332.
Swinbanks, D. D., and J. W. Murray. 1981. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia. Sedimentology 28: 201-237.
Tajima, F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 10.1093/molbev/msm092.
Templeton, A. R. 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7: 381-397.
Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51: 844-851.
Tsang, L. M., F. J. Lin, K. H. Chu, and T. Y. Chan. 2008. Phylogeny of Thalassinidea (Crustacea, Decapoda) inferred from three rDNA sequences: implications for morphological evolution and superfamily classification. J. Zool. Syst. Evol. Res. 46: 216-223.
Tudge, C. C., and C. W. Cunningham. 2002. Molecular phylogeny of the mud lobsters and mud shrimps (Crustacea: Decapoda: Thalassinidea) using nuclear 18S rDNA and mitochondrial 16S rDNA. Invertebr. Syst. 16: 839-847.
Tunberg, B. 1986. Studies on the population ecology of Upogebia deltaura (Leach) (Crustacea, Thalasssinidea). Estuar. Coast. Shelf Sci. 22: 753-765.
Turoczy, N. C., B. D. Mitchell, A. H. Levings, V. S. Rajendram. 2001. Cadmium, copper, mercury, and zinc concentrations in tissues of the King crab (Pseudocarcinus gigas) from southeast Australian waters. Environ. Int. 27: 327-334.
Vaugelas, J., B. Delesalle, and C. Monier. 1986. Aspects of the biology of Callichirus armatus (A. Milne Edwards, 1870) (Decapoda, Thalassinidea) from French Polynesia. Crustaceana 50: 204-216.
Waalkes, M. P., M. Anver, and B. A. Diwan. 1999. Carcinogenic effects of cadmium in the noble (NBL/Cr) rat: induction of pituitary, testicular, and injection site tumors and intraepithelial proliferative lesions of the dorsolateral prostate. Toxicol. Sci. 52: 154-161.
Waterman, T. H., and F. A. Chace, Jr. 1960. General crustacean biology., p. 1-33. In T. H. Waterman [ed.], The physiology of Crustacea. Academic Press, N. Y.
Watras, C. J., and N. S. Bloom. 1992. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnol. Oceanogr. 37: 1313-1318.
Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30: 377-392.
Witbaard, R., and G. C. A. Duineveld. 1989. Some aspects of the biology and ecology of the burrowing shrimp Callianassa subterranea (Montagu) (Thalassinidea) from the southern North Sea. Sarsia 74: 209-219.
Wright, S. 1978. Evolution and genetics of populations, Vol. 4. Variability within and among natural populations. Univ. of Chicago Press, Chicago.
Yao, Q., W. Zang, X. Dai, M. Jiang, G. Xu, and F. Ding. 2003. An acute toxic effects of copper, cadmium, dichlorvos and methamidophos on Penaeus vannamei larval shrimp and their interactions. J. Shanghai Fish. 12: 117-122.
Yeh, H. C., I. M. Chen, P. Chen, and W. H. Wang. 2009. Heavy metal concentrations of the soldier crab (Mictyris brevidactylus) along the inshore area of Changhua, Taiwan. Environ. Monit. Assess. 153: 103–109.
Zevenhoven, R., and P. Kilpinen. 2001. Control of Pollutants in Flue Gases and Fuel Gases. TKK, Espoo.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔