(3.236.214.19) 您好!臺灣時間:2021/05/09 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王偉勳
研究生(外文):Wei-Hsun Wang
論文名稱:整合聲光視覺感測與定位系統之智慧型自走車
論文名稱(外文):Integration of Sonic-Visual Sensing and Localization System for an Intelligent WMR
指導教授:莊季高
指導教授(外文):Jih-Gau Juang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:定位系統視覺感測智慧型自走車
外文關鍵詞:localization systemVisualWMR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出以感測資料為基礎,利用模糊系統來模擬人類的推論模式,經由使用者的經驗和感測器的整合,建立一個兼具控制及判斷的方法,不需要非常複雜的數學方程式,就可以設計出一個效果不錯的控制器。本文主要利用室內定位系統來提供自走車的位置以及頭向夾角,結合模糊邏輯建立停車的行為模式與使用超音波及紅外線感測器作為停車安全的考量,再搭配基因演算法所搜尋之參考路徑,達到自走車追跡效能最佳化控制。在停車模式分為:車庫已知、車庫未知及運送病歷之應用。另外亦使用攝影機與影像處理技術來擷取路面特定顏色的線條,並且計算其長度藉以判斷停車格地點,再透過超音波感測器完成路邊停車動作。進行硬體實驗前先經由套裝軟體Matlab模擬影像處理及模糊理論,在WMR實體測試中,使用LabView 8.5來撰寫人機介面。硬體實驗結果顯示,使用室內定位系統,能有效提供車體精確的位置,避免使用WMR編碼值運算所造成的累積誤差,提高停車控制的準確性及成功率;而使用攝影機與超音波感測器辨識停車地點及完成停車動作,亦符合吾人駕車之行為,經由硬體的實現,證明此智慧型控制器的可行性及可靠性。
Abstract

This thesis presents a wheeled mobile robot WMR using sensor data in path following and parking control. An intelligent control scheme is proposed, which includes the fuzzy system, genetic algorithm, localization system, and image processing technique. Through system integration, the control system can effectively control the robot without using any complicated mathematical equations. Ultrasonic sensors are used to detect vacancy and examine safety distance during parking process. A CCD camera is utilized to search the location of a parking lot. The localization system provides the position and heading direction of the robot. Fuzzy logic is used to form parking behavior pattern. Reference paths are searched by a genetic algorithm. Difference parking modes are introduced, they are forward garage parking, backward garage parking, multiple forward parking, and parallel parking. At the WMR entity tests, we use the LabView 8.5 to encode the interface between human and machine and utilize a personal computer to compute the expected trajectory. Recursive computations are used in WMR to achieve trajectory tracking control. Experiments show that the proposed control scheme can guide the WMR in different parking modes successfully.
Contents

Abstract(Chinese) I
Abstract(English) II
Acknowledgement (Chinese) III
Contents IV
List of Figures VII
List of Table X
1 Introduction 1
1.1 Research Motivation and Goal 1
1.2 Literature Reviews 1
1.3 Thesis Contribution 3
1.4 Thesis Scheme 4
2 WMR System Step 5
2.1 WMR System Description 5
2.2 WMR Body Apparatus 6
2.2.1 PMS5005 sensor and motion control card 6
2.2.2 DC motor 8
2.2.3 Quadrature encoder 9
2.3 Kinematic Equations 10
2.4 Localization System (StarGazzer) 14
2.5 Camera 16
2.6 Ultrasonic Sensor 19
2.7 Infrared Sensor 20
3 Fuzzy Motion Control 22
3.1 Introduction 22
3.2 Intelligent Control Scheme 22
3.2.1 Wall-following 23
3.2.2 The position of garage is known 28
3.2.3 The position of garage is unknown 32
3.3 Human-machine Interface 35
3.4 LabView 8.5 Operating Interface 38
3.5 Real-time Motion Control 40
3.5.1 Wall-following 41
3.5.2 The position of garage is known 45
3.5.3 The position of garage is unknown 46
3.5.4 Application in hallway of hospital to deliver the anamnesis 48
4 Image Motion Control 53
4.1 Image Processing 53
4.1.1 Color space 53
4.1.2 RGB color space 53
4.1.3 HSV color space 55
4.1.4 Histogram method 57
4.1.5 Application 59
4.2 Simulations 60
4.2.1 Histogram process 60
4.2.2 Camera distance estimation 62
4.3 LabView 8.5 Operating Interface 65
4.4 Real-time Motion Control 66
4.4.1 Real-time image process experiment 66
4.4.2 Backward parallel-parking control experiment 70
5 Conclusions 73
5.1 Discussions 73
5.2 Future Investigation and Suggestion 74
5.2.1 Algorithm 74
5.2.2 Hardware 75
References 76
References
[1] Y. Ando and S.Yuta, “Following a wall by an Autonomous Mobile Robot with a Sonar-Ring,” Proc. IEEE International Conference on Roboticsand Automation, vol.
4, pp. 2599-2606, 1995.

[2] Y. X. Chen, Design and Implementation of Car-Like Mobile Robot with Intelligent Parking Capability, Master Thesis, Department of Electrical Engineering, NCKU, ROC, 2002.

[3] A. Curran and K. J. Kyriakopoulos, “Sensor-based Self-localization for Wheeled Mobile Robots”, Proc. IEEE Mediterranean Symp. New Direction Contr. Automat.,
1993.

[4] 白仲凱, 應用模糊邏輯與基因演算法於輪式移動型機器人之追跡控制, 碩士
論文, 國立臺灣海洋大學通訊與導航工程研究所, 2007.

[5] User’s Guide, Localization system StarGazer? for Intelligent Robots. HAGISONIC Co., LTD, 2004.

[6] User’s Manual, Pan/Tilt/Zoom Network Camera PZ6114/6124, VIVOTEK, 2008.

[7] L A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

[8] Y. Zhao and S. L. BeMent, “Kinematics, Dynamics and Control of Wheeled Mobile Robots,” Proceedings of the 1992 IEEE International Conference on Robotics & Automation, pp. 91-96, 1992.

[9] Y.P. Leow, K.H. Low, and W.K. Loh, “Kinematic Modelling and Analysis of Mobile Robots with Omni-Directional Wheels,” Seventh International Conference on Control, Automation, Robotics And Vision (ICARCV '02), pp. 820-825, 2002.

[10] B. dAndrea, G. Bastin, and G. Campion, “Dynamic Feedback Linearization of Nonholonomic Wheeled Mobile Robots,” Proceedings of the 1992 IEEE International Conference on Robotics & Automation, pp. 820-825, 1992.

[11] Y. Chung and C. Park, and F. Harashima, “A Position Control Differential Drive Wheeled Mobile Robot,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 853-863, 2001.

[12] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “A Practical Fuzzy Logic Controller for The Path Tracking of Wheeled Mobile Robots,” Application Note IEEE Control Systems Magazine, pp. 60-65, 2003.

[13] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “A Fast Path Planning -and-tracking Control for Wheeled Mobile Robots,” Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea. pp. 1736-1741,
2001.

[14] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “Fuzzy Model Reference Control of Wheeled Mobile Robots,” Proceedings of The 27th Annual Conference of the IEEE industrial Electronics Society, pp. 570-573, 2001.

[15] E.X. Shi, W.M. Huang, and Y.Z. Ling, “Fuzzy Predictive Control of Wheeled Mobile Robot Based on Multi-Sensors,” Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 439-443, 2004.

[16] 陳翰生, 智慧型自走車之路徑規劃與停車控制, 碩士論文, 國立臺灣海洋大學通訊與導航工程研究所, 2008.

[17] 陳永祥, 自走車軌跡控制, 碩士論文, 私立中華大學電機工程學系碩士班,
2001

[18] 陳巧茵, 小型自走車以超音波避障之研究, 碩士論文, 國立成功大學工程科
學研究所, 2001.

[19] 林于婉, 以超音波感測器建立自走車環境地圖之研究, 碩士論文, 碩士論
文, 國立成功大學工程科學研究所, 2005.

[20] 顧高至, 多功能智慧型自走車之研發, 碩士論文, 國立成功大學工程科學研
究所, 2001.

[21] 汪在祥, 自走車在智慧型空間下之動態目標追蹤, 碩士論文, 私立大同大學
機械工程研究所, 2005.

[22] 楊雅兆, 使用超音波感測之自走車避障實務設計, 碩士論文, 私立中原大學
機械工程學系, 2004.

[23] 游天龍, 彩色影像辨識技術應用於機器人運動控制之研究, 碩士論文, 私立南台科技大學電機工程研究所, 2005.

[24] 蕭義麟, 具眼在手視覺系統之輪式移動型機械手臂之導航與避障, 碩士論文, 國立成功大學機械工程學系研究所, 2005.

[25] 許哲源, 自走車之驅動控制與避障規劃, 碩士論文, 國立成功大學工程科學
研究所, 2003.

[26] 蔡奇謚, 影像感測器之色彩濾波陣列補插與輪式機器人之視覺追蹤控制設計, 博士論文, 國立交通大學電機與控制工程學系研究所, 2008.

[27] 廖名揚, 應用即時影像及模糊PID控制自走車於無線攔截任務, 碩士論文, 國立成功大學航空太空工程研究所, 2007.

[28] 陳嶽東, 以訊號強度為基礎利用高斯混合模型之IEEE 802.11 無線區域網路定位演算法, 碩士論文, 國立成功大學資訊工程研究所, 2005.

[29] 陳政傑, 自走式機器人隻雷射定位與路徑規劃, 碩士論文, 國立雲林科技大學電機系研究所, 2006.

[30] 謝宗明, 自動化影像定位系統及其定位標記之應用, 碩士論文, 國立成功大學製造工程研究所, 2005.

[31] User’s Manual, DUR5200 Ultrasonic Range Sensor Module, DrRobt, 2004.

[32] User’s Manual, GP2Y0A21YK/GP2Y0D21YK, SHARP, 2004.

[33] R. C. Gonzalez and R. E. Woods, Digital Image Processing Second Edition, Prentice Hall, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔