(3.238.173.209) 您好!臺灣時間:2021/05/08 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:曾建澔
研究生(外文):Chien-Hao Tseng
論文名稱:模糊自適應交互多模型非線性濾波器於整合導航系統之性能提昇
論文名稱(外文):Fuzzy Adaptive Interacting Multiple Model using Nonlinear Filter for Enhancing Integrated Navigation System Performance
指導教授:卓大靖
指導教授(外文):Dah-Jing Jwo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:96
中文關鍵詞:整合導航系統交互多模型擴展型卡爾曼濾波器無跡卡爾曼濾波器模糊邏輯自適應系統
外文關鍵詞:Integrated navigation systemInteracting Multiple ModelExtended Kalman filterUnscented Kalman filterFuzzy logic adaptive system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
卡爾曼濾波器是一種遞迴式最佳估測演算法,常被廣泛應用在整合式導航設計中;理想的卡爾曼濾波器建基於準確的動態模型,而雜訊統計特性是零均值的白雜訊,將可獲致最佳的濾波效果。若系統建模不準確且雜訊的統計模型不能掌握時,將導致濾波器發散,此時,應用交互多模型演算法能有效抑制濾波器的發散。
由於在導航過程中系統雜訊和量測雜訊是非常複雜的,使得雜訊的不確定性導致擴展型卡爾曼濾波器(EKF)或無跡卡爾曼濾波器(UKF)的效能降低,結合交互多模型演算法及無跡卡爾曼濾波器(IMM-UKF)來解決雜訊不確定性問題是一可行的方法。但決定系統雜訊的傳統方法往往是依賴人為經驗或是藉由電腦計算,為了解決這個缺點,本論文提出模糊交互多模型無跡卡爾曼濾波器(FUZZY-IMMUKF)演算法,並應用於整合導航系統之設計中。這個方法,引入一模糊邏輯自適應系統(Fuzzy Logic Adaptive System),藉由模糊推論適時調整系統雜訊變動之上、下界,再利用交互多模型演算法來決定載體運動之系統狀態。此外,無跡卡爾曼濾波器採用確定性採樣,是無導數(derivative-free)計算的演算法,能有效處理導航非線性之問題。實驗顯示,於整合導航設計中, FUZZY-IMMUKF 演算法較傳統之UKF和IMMUKF具有較優越之估計準確度。
The Kalman filter, a kind of recursive optimal estimator, has been widely applied in the design of integration navigation. An ideal Kalman filter can lead to an optimal filter when dynamics of model is completely known and noise is zero mean and white. In case of imprecise system modeling or deficiency of noise statistics, filter will tend to be divergent. In this case, interactive multiple model can be adopted to suppress the divergence of filtering.
Owing to process and measurement noises are very complex during maneuvering, uncertainties induced by noise seriously degrade the performance of Extended/Unscented Kalman filter. The combination of interacting multiple models algorithm and unscented Kalman filter becomes a feasible way to resolve the problem of uncertainties of noise. A conventional way to decide the quantity of process noise heavily depends on expert’s experience or resorts to test by try and error via computer. To overcome this inconvenience, a fuzzy interacting multiple models unscented Kalman filter (FUZZY-IMMUKF) is proposed in this thesis, and further demonstrated in the design of integrated navigation. A fuzzy logic adaptive system is introduced in this approach to timely adjust upper and lower bounds of the variation of process noise, then the states of the maneuver can be estimated by interacting multiple model unscented Kalman filter. Moreover, unscented Kalman filter adopts deterministic sampling and it is known as a derivative free algorithm capable of dealing with nonlinear filtering problem. The results show that the proposed FUZZY-IMMUKF algorithm has superior estimation accuracy as compared to UKF or IMM-UKF approach in the application of integrated navigation.
摘要 I
Abstract III
Contents V
List of Figures VII
List of Tables XI
Chapter 1 INTRODUCTION 1
§ 1.1 General 1
§ 1.2 Thesis Outline 4
Chapter 2 NAVIGATION SYSTEM 5
§ 2.1 Introduction 5
§ 2.2 Overview of the GPS 6
§ 2.3 The mathematics of the GPS 8
§ 2.4 Pseudorange errors 10
§ 2.5 GPS/INS integration 13
Chapter 3 The Nonlinear Kalman filter for navigation processing 15
§ 3.1 The Extended Kalman Filter 15
§ 3.2 The Unscented Kalman Filter 18
Chapter 4 Introduction of Interacting Multiple Model 25
§ 4.1 The Interacting Multiple Model (IMM) Algorithm 25
§ 4.2 The IMM based on Unscented Kalman Filter 29
§ 4.3 The Fuzzy Logic Adaptive System (FLAS) 32
§ 4.4 The Fuzzy Adaptive Interacting Multiple Model Unscented Kalman Filter 34
Chapter 5 Simulation and Experiments with Analyses 36
§ 5.1 Using IMM-EKF in GPS navigation 37
§ 5.1.1 Simulation of two dimensional trajectory 39
§ 5.1.2 Simulation of three dimensional trajectory 47
§ 5.2 IMM-UKF in GPS/INS integrated navigation 55
§ 5.2.1 Simulation for scenario 1 58
§ 5.2.2 Simulation for scenario 2 64
§ 5.3 FUZZY-IMMUKF in GPS/INS integrated navigation 70
§ 5.3.1 Simulation for scenario 1 71
§ 5.3.2 Simulation for scenario 2 77
§ 5.4 Experiment results 83
Chapter 6 Conclusions and Future Work 93
References 95
[1] Axelrad, P. and Brown, R.G. GPS navigation algorithms, in: B. W. Parkinson, J.J. Spilker, P. Axelrad and P. Enga, (Ed.), Global Positioning System: Theory and Applications, Volume I, AIAA, Washington DC, Chap. 9 (1996).
[2] Brown, R.G. and Hwang, P.Y.C. Introduction to random signals and applied Kalman filtering, (3rd edition), John Wiley & Sons, New York, (1997).
[3] Chen, G. and Harigae, M. “Using IMM Adaptive Estimator in GPS Positioning,” SICE, pp. 25-27 (2001).
[4] Deshpande, S. K. and Challa, S. “Robust Background estimator using IMM,” IEEE Decision and Control, pp. 130-135 (2007).
[5] Farrell, J. and Barth, M. The Global Positioning System and Inertial Navigation, McGraw-Hill professional (1999).
[6] Gelb, A. Applied optimal estimation, M.I.T. Press, MA (1974).
[7] Jwo, D. J. and Lai, C. N. “Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation,” GPS Solutions, 12, pp. 249-260 (2008).
[8] Jwo, D. J. and Tseng, C. H. “GPS Navigation processing using the IMM-based EKF,” The 3rd International Conference on Sensing Technology, (2008).
[9] Julier, S. J. “The scaled unscented transformation,” in: Proceedings of the American Control Conference, Anchorage, USA, pp. 4555-4559 (2002).
[10] Julier, S. J.; Uhlmann, J. K. and Durrant-whyte, H. F. “A new method for the nonlinear transformation of means and covariances in filters and estimators,” IEEE Transactions on Automatic Control, vol. 5, no. 3, pp. 477-482 (2000).
[11] Julier, S. J. and Uhlmann, J. K. ”Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations,” in: Proceeding of the American Control Conference, pp. 887-892 (2002).
[12] Johnston, L.A. and Krishnamurthy, V. “An Improvement to the Interacting Multiple Model (IMM) Algorithm,” IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 2909-2923 (2001).
[13] Kim, Y.-S. and Hong, K.-S. “An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment,” International Journal of Control, Automation, and Systems, vol. 2, no. 3, pp. 310-318 (2004).
[14] Li, X. R. and Bar-Shalom, Y. Estimation with Applications to Tracking and Navigation, John Wiley & Sons, Inc. (1993).
[15] Li, X. R. and Bar-Shalom, Y. “Performance Prediction of the Interacting Multiple Model Algorithm,” IEEE Transactions on Aerospace and Electronic System, vol. 29, no. 3, pp. 755-771 (1993).
[16] Li, X. R. and Bar-Shalom, Y. “Design of an Interacting Multiple Model Algorithm for Air Traffic Control Tracking,” IEEE Transactions on Control System Technology, vol.1, no. 3, pp. 186-194 (1993).
[17] Li, Y.; Wang, J.; Rizos, C.; Mumford, P. J. and Ding, W. “Low-cost tightly coupled GPS/INS integration based on a nonlinear Kalman filter design,” in: Proceedings of the U.S. Institute of Navigation National Tech. Meeting, pp. 958-966 (2006).
[18] Lin, X.; Kirubarajan, T.; Bar-Shalom, Y. and Li, X. “Enhanced Accuracy GPS Navigation Using the Interacting Multiple Model Estimator,” IEEE, pp. 4-1911-4-1923 (2001).
[19] Lee, B. J.; Park, J. B.; Lee, H. J. and Joo, Y. H. “Fuzzy-logic-based IMM algorithm for tracking a manoeuvring target,” IEE Radar Sonar Navig. vol. 152, no. 1, pp. 16-22 (2005).
[20] Mohamed, A. H. and Schwarz, K. P. “Adaptive Kalman filtering for INS/GPS,” Journal of Geodesy, vol. 73, no. 4, pp. 193-203 (1999).
[21] Mehra, R. K. “Approaches to adaptive filtering.” IEEE Trans. Automat. Contr., vol. AC-17, pp. 693-698 (1972).
[22] Wan, E. A. and Van der Merwe, R. The Unscented Kalman Filter, in: Simon Haykin (Ed.), Kalman Filtering and Neural Networks, Wiley, (Chapter 7) (2001).
[23] Xu, T. and Cui, P. “Fuzzy Adaptive Interacting Multiple Model Algorithm for INS/GPS,” IEEE International Conference on Mechatronics and Automation, pp. 2963-2967 (2007).
[24] Yang, Z. B.; Xie, K.; Guo, F. C. and Zhou, Y. Y. “Maneuvering emitter tracking by a single observer using IMM algorithm based on unscented transformation,” IEEE, pp. 1-4 (2006).
[25] Zang, R. C. and Cui, P. Y. “An innovation Filtering Multiple Model Algorithm for Integrated Navigation System,” IEEE International Conference on Innovative Computing, Information and Control, vol. 3, pp. 394-397 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔