|
[1] R. D. Phair and T. Misteli, “High mobility of proteins in the mammalian cell nucleus”, Nature, vol. 404, p.p. 604–609, 2000. [2] Emily C. Y. Su, H. S. Chiu, A. Lo, J. K. Hwang, T. Y. Sung and W. L. Hsu, “Protein subcellular localization prediction based on compartment-specific features and structure conservation.” BMC Bioinformatics, vol. 8, pp. 330, 2007. [3] R. Yuste, "Fluorescence microscopy today". Nat Methods, vol. 2, pp. 902–904, 2005. [4] J. L. Gardy and F. S. L. Brinkman, “Methods for predicting bacterial protein subcellular localization.” Nature Reviews Microbiology, vol. 4, pp. 741-751, 2006. [5] A. Pierleoni, P. L. Martelli, P. Fariselli and R. Casadio, “BaCelLo: a balanced subcellular localization predictor.” Bioinformatics, vol. 22, pp. e408-16, 2006. [6] C. S. Yu, C. J. Lin and J. K. Hwang, “Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.” Protein Sci., vol. 13, pp. 1402-1406, 2004. [7] C. S. Yu, Y. C. Chen, C. H. Lu and J. K. Hwang, “Prediction of protein subcellular localization.” Proteins, vol. 64, pp. 643-51, 2006. [8] R. Nair and B. Rost, “Mimicking cellular sorting improves prediction of Subcellular Localization.” J. Mol. Biol., vol. 348, pp. 85-100, 2005. [9] A. Hoglund, P. Donnes, T. Blum, H.-W. Adolph and O. Kohlbacher, “MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs, and amino acid composition.” Bioinformatics, vol. 22, pp. 1158-65, 2006. [10] K. Nakai and M. Kanehisa. ”Expert system for predicting protein localization sites in gram-negative bacteria.” Proteins, vol. 11, pp. 95-110, 1991. [11] J. L. Gardy, M. Laird, F. Chen, S. Rey, C. J. Walsh, G. E. Tusnady, M. Ester and F.S.L. Brinkman, “PSORT-B v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis.” Bioinformatics, vol. 21, pp. 617-623, 2005. [12] R. Nair, P. Carter and B. Rost, “NLSdb: database of nuclear localization signals.” Nucleic Acids Res., vol. 31, pp. 397-9, 2003. [13] Z. Lu, D. Szafron, R. Greiner, P. Lu, D. S. Wishart, B. Poulin, J. Anvik, C. Macdonell and R. Eisner, “Predicting subcellular localization of proteins using machine-learned classifiers.” Bioinformatics, vol. 20, pp. 547-56, 2004. [14] J. D. Bendtsen, L. J. Jensen, N. Blom, G. V. Heijne and S. Brunak, “Feature-based prediction of non-classical and leaderless protein secretion.” Protein Eng Des Sel., vol. 17, pp. 349-56, 2004. [15] H. Shatkay, A. Hoglund, S. Brady, T. Blum, P. Donnes and O. Kohlbacher. “SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data.” Bioinformatics, vol. 23, pp. 1410-1417, 2007. [16] O. Emanuelsson, H. Nielsen, S. Brunak and G. V. Heijne, “Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.” J. Mol. Biol., vol. 300, pp. 1005-16, 2000. [17] P. Horton, K.-J. Park, T. Obayashi and K. Nakai, “Protein Subcellular Localization Prediction with WoLF PSORT.” Proceedings of Asian Pacific Bioinformatics Conference 2006, Taipei, Taiwan, 2006. [18] H. B. Shen and K. C. Chou. “PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition.” Analytical Biochemistry, vol. 373, pp. 386–388, 2008. [19] T. Habib, C. Zhang, J. Y. Yang, M. Q. Yang and Y. Deng. “Supervised learning method for the prediction of subcellular localization of proteins using amino acid and amino acid pair composition.” BMC Genomics, vol. 9, pp. S16, 2008. [20] K.C. Chou, “Prediction of protein cellular attributes using pseudo amino- acid-composition.” PROTEINS: Structure, Function, and Genetics, vol. 43, pp. 246–255, 2001. [21] H. B. Shen and K. C. Chou, “Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition.” Biochem. Biophys. Res. Comm., vol. 337, pp. 752–756, 2005. [22] W.-L. Huang, C.-W. Tung, H.-L. Huang, S.-F. Hwang and S.-Y. Ho. “ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features.” BioSystems, vol. 90, pp. 571-581, 2007. [23] H.-B. Shen and K.-C. Chou. “Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins.” Protein Engineering, Design & Selection, vol. 20, pp. 39–46, 2007. [24] M. Rashid, S. Saha and G. P.S. Raghava. “Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs.” BMC Bioinformatics, vol. 8, pp. 337, 2007. [25] A. Garg and G. P. S. Raghava. “ESLpred2 improved method for predicting subcellular localization of eukaryotic proteins.” BMC Bioinformatics, vol. 9, pp. 503, 2008. [26] K. C. Chou and H. B. Shen. “MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM.” Biochem Biophys Res. Comm., vol. 360, pp. 339–345, 2007. [27] E. Tantoso and K.-B. Li. “AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices.” Amino Acids, vol. 35, pp. 345–353, 2008. [28] M. Zhou, J. Boekhorst, C. Francke and R. J. Siezen. “LocateP: Genome-scale subcellular-location predictor for bacterial proteins.” BMC Bioinformatics, vol. 9, pp. 173, 2008. [29] C.-C. Lee. “A Multi-Group Particle Swarm Optimization Algorithm Using a Dodge Strategy.” Master's thesis, National Taiwan Ocean University, unpublished, Keelung, Taiwan, 2008. [30] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama and M. Kanehisa, “AAindex: amino acid index database, progress report 2008.” Nucleic Acids Res., vol. 36, pp. D202-D205, 2008. [31] J. R. Quinlan. “C4.5: Programs for Machine Learning.” Morgan Kaufmann Publishers, 1993. [32] J. R. Quinlan. “Improved use of continuous attributes in c4.5.” Journal of Artificial Intelligence Research, vol. 4, pp. 77-90, 1996. [33] J. R. Quinlan. “Induction of Decision Trees.” Machine Learning, vol. 1, pp. 81-106, 1986. [34] D.-W. Lee, C.-B. Ban, K.-B. Sim, H.-S. Seok, K.-J. Lee and B.-T. Zhang, “Behavior evolution of autonomous mobile robot using genetic programming based on evolvable hardware.” Systems, Man, and Cybernetics, 2000 IEEE International Conference on, vol. 5, pp. 3835 – 3840, 2000. [35] S.-Y. Ho, S.-J. Ho, Y.-K. Lin and C.-C. Chu, "An Orthogonal Simulated Annealing Algorithm for Large Floorplanning Problems," IEEE Trans. VLSI systems, vol. 12, no. 8, pp. 874-876, Aug. 2004. [36] S.-Y. Ho, H.-S. Lin, W.-H. Liauh and S.-J. Ho. “OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems.” IEEE Trans. Systems, Man, and Cybernetics -Part A, Systems and Humans, vol. 38, pp. 288-298, 2008. [37] J. Axelsson, S. Menth, K. Semmler, “Genetic algorithms in industrial design.” Tools with Artificial Intelligence, 1993. TAI '93. Proceedings., Fifth International Conference on, pp.64 – 67, 1993. [38] J. H. Holland. “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence.” University of Michigan, 1975. [39] J. Kennedy and R. Eberhart. “Particle swarm optimization.” in Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995. [40] L. M. Schmitt. “Theory of Genetic Algorithms.” Theoretical Computer Science vol. 259, pp. 1-61, 2001. [41] M. Dorigo. “Optimization, Learning and Natural Algorithms.” PhD thesis, Politecnico di Milano, Italy, 1992. [42] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. “Optimization by Simulated Annealing.” Science, vol. 220, pp. 671-680, 1983. [43] M. Dash and H. Liu. “Feature Selection for Classification.” Intelligent Data Analysis, vol. 1, pp.131–156, 1997. [44] H. Peng, F. Long and C. Ding. “Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1226, 2005. [45] K. Kira and L.A. Rendell. “The feature selection problem: Traditional methods and a new algorithm.” In: Proceedings of Ninth National Conference on Artificial Intelligence, 129–134, 1992. [46] I. Kononenko. “Estimating attributes: Analysis and extension of RELIEF.” In: Proceedings of European Conference on Machine Learning, 171–182, 1994. [47] C.-W. Tung and S.-Y. Ho. “POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.” Bioinformatics, vol. 23, pp. 942–949, 2007. [48] M. Kumar1, M. M. Gromiha and G. P. S. Raghava. “Identification of DNA-binding proteins using support vector machines and evolutionary profiles.” BMC Bioinformatics, vol., 8, pp. 463, 2007. [49] C. Cortes and V. Vapnik. “Support vector networks.” Machine Learning, vol. 20, pp. 273–297, 1995. [50] J. Tian, N. Wu, J. Guo and Y. Fan. “Prediction of amyloid fibril-forming segments based on a support vector machine.” BMC Bioinformatics, vol. 10, pp. S45, 2009. [51] B. W. Matthews. “Comparison of the predicted and observed secondary structure of T4 phage lysozyme.” Biochim. Biophys. Acta., vol. 405, pp. 442-451, 1975.
|