(3.92.96.236) 您好!臺灣時間:2021/05/09 01:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:施振祥
研究生(外文):Chen-Hsiang Shih
論文名稱:基於正交分頻多工之水下影音
論文名稱(外文):A Orthogonal Frequency Division Multiplexing Transmission Architecture for Underwater Audio/Image Acoustic Communication
指導教授:張順雄張順雄引用關係林進豐林進豐引用關係
指導教授(外文):Shun-Hsyung ChangChin-Feng Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:46
中文關鍵詞:功率配置機制正交分頻多工水下通訊
外文關鍵詞:Power assignment mechanismOFDMunderwater communication.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們提出基於水下語音影像通訊系統中應用於正交分頻多工技術的功率分配機制。其特色是用較高的功率配置到較高服務品質參數的訊號,以達到最高的傳輸速率,或是最小傳輸功率,我們也加上不同程度的通道保護和適應性調變技術到功率配置機制。特別是對於訊息要求嚴謹的位元錯誤率,我們使用高功率,低階調變和高階通道保護機制。我們藉由模擬討論此架構的功能
In this paper, we present a power assignment mechanism which is suitable for orthogonal frequency division multiplexing (OFDM)-based underwater acoustic communication system. An essential feature of this scheme is that higher power is allocated to the information that requires higher quality of service. To achieve the purpose of maximum resource utilization, or minimum total transmission power, we also incorporate unequal error protection and adaptive modulation techniques into the proposed power assignment scheme. Specifically, we employ high power, low level modulation, and high level error protection scheme for messages that dictate stringent bit error rate (BER). For a practical underwater acoustic communication scenario, a simulation has been carried out to verify proper functioning of the proposed scheme.
第一章 序 論
1-1 研究動機與目的
1-2 各章節內容概述
第二章 水下聲學傳輸技術
2-1 水下聲學傳輸技術之演進
2-2 正交分頻多工技術
2-2-1 簡述
2-2-2 串列與並列的轉換
2-2-3 保護區間(Guard Interval)和循環字首(Cyclic Prefix)
2-2-4 正交性
2-2-5 正交分頻多工優點和缺點
第三章 基於正交分頻多工之水下影音傳輸技術
3-1簡介
3-1-1摺疊碼
3-1-2調變
3-1-3功率配置
3-2基於正交分頻多工之水下影音傳輸技術設計
第四章 電腦模擬與討論
4-1 位元錯誤率與傳輸功率效能討論
4-2 水下影像音訊傳輸效能討論
4-2-1 G.729音訊壓縮傳送與接收
4-2-2 JPEG2000圖片壓縮傳送與接收
第五章 結論與未來展望
[1] A. B. Baggeroer (1984): ‘Acoustic Telemetry-An Overview,’ IEEE J. Oceanic Eng. OE-9(4), pp.229-235.
[2] M. Stojanovic (1996): ‘Recent Advances in High-Speed Underwater Acoustic Communications,’ IEEE
J. Oceanic Eng. 21(2), pp.125-136.
[3] D. B. Kilfoyle and A. B. Baggeroer (2000): ‘The State of the Art in Underwater Acoustic Telemetry ,’ IEEE J. Oceanic Eng. 25(1), pp.4-27.
[4] E. M. Sozer, M. Stojanovic and John G. Proakis. (2000), ‘Underwater Acoustic networks,’ IEEE J. Oceanic Eng. 25(1), pp.72-83.
[5] John G. proakis, E. M. Sozer, J. A. Rice, and M. Stojanovic (2001): ‘Shallow Water Acoustic Networks,’
IEEE Communications Magazine, 11, pp.114-119.
[6] J. H. Cui, J. Kong, M. Gerla, and S. Zhou (2006): ‘The Challenges of Building Scalable Mobile Underwater Wireless Sensor Networks for Aquatic Applications,’ IEEE Network, pp.12-18.
[7] M. Chitre, S. Shahabudeen, L. Freitag, and M. Stojanovic (2008): ‘Recent Advances in Underwater Acoustic Communications & Networking,’ Ocean’08.
[8] 溫志宏, 劉宗憲, 邱茂清, 林仁宏, 連振凱, 林進豐,李國瑞 “正交分頻多重進接技術,” 民國96年7月, 滄海書局。
[9] C. F. Lin, Z. X. Shi, and S. H. Chang, ’A Power Assignment Mechanism for OFDM-based Underwater Acoustic Communication System, appear in Proceedings of IEEE the 11th International Conference on Advanced Communication Technique 2009.
[10] M. Stojanovic, J. A. Catipovic and J. G. Proakis, “Phase coherent digital communications for underwater acoustic channels,” IEEE J. Oceanic Eng., vol. 19, pp. 100-1 11, Jan. 1994.
[11] R. Coates, Underwater Acoustic Systems. New York Wiley, 1989
[12] T. Curtin, J . Bellingham, J. Catipovic, and D. Webb, “Autonomous oceanographic sampling networks," Oceanogr., vol. 6, no. 3, pp. 86-94, 1993
[13] D. P. Brady and J. A. Catipovic, "Adaptive multiuser detection for underwater 'acoustical channels," IEEE J. Oceanic Eng., vol. 19, pp.158-165, A r. 1994.
[14] J. Talavage, T. Thiel, and D. Brady, “An efficient store-and-forward protocol for a shallow water acoustic local area network,” presented at Proc. OCEANS’94, Brest, France, Sept. 1994.
[15] L. Berkhovskikh and Y. Lysanov, Fundamentals of Ocean Acoustics.New York: Springer, 1982.
[16] J. Catipovic. “Performance limitations in underwater acoustic telemetry,”IEEE J. Oceanic Eng., vol. 15, pp. 205-216, July 1990.
[17] R. Galvin and R. F. W. Coates, “Analysis of the performance of an underwater acoustic communication system and comparison with a stochastic model,” in Proc. OCEANS’94, Brest, France, Sept. 1994, pp.111,478-111.482.
[18] G. S. Howe, P. Tarbit, 0. Hinton, B. Sharif, and A. Adams, “Sub-sea acoustic remote communications utilising an adaptive receiving beam former for multipath suppression,” in Proc. OCEANS’94, Brest, France, Sept. 1994, pp. 1.313-1.316.
[19] R. H. Owen, B. V. Smith, and R. F. W. Coates, “An experimental study of rough surface scattering and its effects on communication coherence,” in Proc. OCEANS’94, Brest, France, Sept. 1994, pp. ILI.483-III.488.
[20] A. Essebbar, G. Loubet and F. Vial, “Underwater acoustic channel simulations for communication,” in Proc. OCEANS’94, Brest, France, Sept. 1994, pp. 111.495-111.500.
[21] W. C. Jakes, Ed., Microwave Mobile Communications. Piscataway, NJ:IEEE Press, 1974.
[22] M. Zheng, “Experimental study on statistical characteristics of pulse transmission in the shallow water,” presented at Proc. Inst. Acoust.,Dec. 1993.
[23] R. Iltis and A. Fuxjaeger, “A digital DS spread spectrum receiver with joint channel and Doppler shift estimation,” IEEE Trans. Commun., vol.39, pp. 1255-1265, Aug. 1991
[24] W. C. Jakes, Ed., Microwave Mobile Communications. Piscataway, NJ:IEEE Press, 1974
[25] M. Stojanovic, J. A. Catipovic, and J. G. Proakis, “Performance of high-rate adaptive equalization on a shallow water acoustic channel,” submitted to J. Acoust. Soc. Amer.
[26] M. Stojanovic, J. Proakis, and J. Catipovic, “Analysis of the impact of channel estimation errors on the performance of a decision-feedback equalizer in fading multipath channels,” IEEE Trans. Commun., vol. 43, pp. 877-886, Feb.Nar.lApr. 1995.
[27] M. Woo, N. Prabhu, and A. Ghafoor, “Dynamic Resource Allocation for Multimedia Services in Mobile Communication Environments,” IEEE Journal on Selected Areas in Communication, Vol. 13, No. 5, pp. 913–922 (1995)
[28] Technical Specification Group Radio Access Network—Multiplexing and Channel Coding (FDD), 3rd Generation Partnership Project (3GPP), Release 7, Doc. 75-25-212 (2007).
[29] 林進豐,行動衛星通訊,五南,2007年12月。
[30] C. F. Lin and C. Y. Li, “A DS UWB Transmission System for Wireless Telemedicine,” WSEAS Transactions on Systems, July, 2008, pp.578-588.
[31] C. F. Lin, and K. T. Chang,” A Power Assignment Mechanism in Ka Band OFDM-based Multi-satellites Mobile Telemedicine,” J. of Medical and Biological Engineering, 28(1), pp.17-22, 2008.
[32] C. F. Lin, S. H. Chang, J. Y. Chen, and J. T. Yan, “A Power Assignment Mechanism for Underwater Wireless Multimedia,”
Proc. of MTS/IEEE OCEANS Conference (2008).
[33] 林進豐,張順雄, 陳建堯, 顏仲庭, 一種基於變化長度展頻序列之水下影像無線傳輸裝置, M346993, 2008年12月11日至2018年7月31日。
[34] Ker-Wei Yu, Jiing-Kae Wu, Shun-Hsyung Chang, and Che-Tsung Chen,“Real-Time Underwater Sound Monitoring System in Cage Farming Fishery” InternationalConference on Subsea Technologies,SubSeaTech’2007, June 2007.
[35] C. F. Lin, C. P. Chen, C. H. shih, S. W. Leu, C. H. Tseng, H. S. Hung, F. S. Lu, S. H. Chang, ‘An OFDM-based Underwater Acoustic Multimedia System’, appear in 9th WSEAS Int. Conf. on Multimedia Systems & Signal Processing.
[36] C. F. Lin, C. P. Chen, C. H. shih, S. W. Leu, C. H. Tseng, H. S. Hung, F. S. Lu, S. H. Chang, ‘An OFDM-based Transmission Scheme for Underwater Acoustic Multimedia’, appear in WSEAS Transactions on Communications.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔