(3.236.122.9) 您好!臺灣時間:2021/05/09 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱昭瑋
研究生(外文):Chou-Wei Chiu
論文名稱:箱網養殖之環境監測系統研發
論文名稱(外文):A Study of Environmental Monitoring System for Net Cage Culture
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:115
中文關鍵詞:溫度感測器箱網養殖LabView8051控制壓力感測器
外文關鍵詞:Temperature sensoraquacultureLabView8051 controlpressure sensorcage
相關次數:
  • 被引用被引用:4
  • 點閱點閱:707
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:182
  • 收藏至我的研究室書目清單書目收藏:1
台灣陸上魚產養殖的發展已漸受限制,箱網養殖是未來的趨勢。不過箱網養殖人力成本相當高,風險也較大,需要有自動監控系統監控才行。因此箱網自動化感測系統為其關鍵技術。本論文於箱網架設溫度、壓力、流速流向計,並製作其系統,準備開發箱網養殖自動化環境監控系統。
本論文整合感測器讀取電路、8051控制電路,製作一水下環境自動感測系統。感測器讀取電路之輸出電壓設計在0到5Volt之間,而溫度感測器之電壓輸出最小值設計為0Volt,其溫度為-3.15℃±1℃;最大值將以控制電路之控制範圍來設計,為5Volt,即為50℃±2℃。
本研究設計的溫度感測器電路輸出電壓經過量測以及計算後得到室溫之平均輸出電壓為2.06Volt,而ACD0804之A/D轉換,是先給ACD0804一參考電壓,然後ACD0804依據這個電壓位準,將其電壓值分割成255個等分,然後每一個等分有依序不同的8bit數位訊號傳回ICL232進行串列傳輸,然後在將8bit數位訊號轉成電腦接收端所能接受的ASCII碼。本研究之溫度感測器於50℃之平均輸出電壓為4.86Volt,故將ACD0804之參考電壓訂為5.1Volt,而讀取電路中的差值放大器之參考電壓位準為2.70Volt,故可以得到一溫度感測範圍-3.15℃±1℃~50℃±2℃。
壓力感測器之輸出電流為4mA~20mA,為線性輸出,而在負載部份給一100Ω電阻,再利用差值放大器取電阻上之壓降,故負載上之壓降為0.4Volt到2Volt之間,量測深度範圍為0~10公尺水深。
最後用LabView將回傳之ASCII碼經由函數轉換成為溫度以及水深,形成一箱網自動化環境檢測系統。
流速流向計為套裝設備,使用套裝軟體以及其設備就可將其參數傳回電腦。
本論文進行系列實驗,確認系統之可用,包含了水槽水下實驗以及小艇碼頭水下實驗。
The development of inland fish cultivation in Taiwan has caught people’s eye gradually, and cage aquaculture will be for sure a future trend. However, the aquaculture has high labor cost and high risk, automatic monitoring system is thus needed. Therefore, cage automatic sensing system is the core technology. In this article, temperature, pressure and flow meter is installed at the cage, and a system is prepared; that is, an automatic environmental monitoring system for cage aquaculture is developed.
In this article, sensor readout circuit, 8051 control circuit are integrated so as to prepare an underwater environmental automatic sensing system. The output voltage of the readout circuit of the sensor is designed at the range from 0 to 5 volts, and the output voltage of the temperature sensor has a minimum designed at 0 volt, with temperature of -3.15℃±1℃; the maximum value is going to be designed by the control range of the control circuit, which is 5 volts, that is, 50℃±2℃.
In this study, after measurement and calculation on the output voltage of the designed temperature sensor circuit, we can obtain the average output voltage at room temperature to be 2.06 volts; for the A/D conversion of ACD0804, a reference voltage is given first to ACD0804, then ACD0804 will follow this voltage level to divide the voltage value into 255 equal divisions, then each division has sequential and different 8 bit digital signal to be sent back to ICL232 to perform series transmission, then the 8 bit digital signal is converted ASCII code that can be accepted by the receiving end of the computer. The temperature sensor of this study at 50℃ has average output voltage of 4.86 volts, hence, the reference voltage of ACD0804 is set up as5.1 volts, and the reference voltage level of the differential amplifier in the readout circuit is 2.70 volts, we can then obtain a temperature sensing range of -3.15℃±1℃~50℃±2℃.
The output current of pressure sensor is 4mA~20mA, which is linear output; for the load part, a 100Ω resistor is given, then a differential amplifier is used to take the voltage drop on the resistor, hence, the voltage drop on the load is from 0.4 volt to 2 volt, and the measurement depth range is water depth of 0~10 meters.
Finally, LabView is used to perform functional conversion on the sent-back ASCII code into temperature and water depth so as to form a cage automatic environment detection system.
Flow meter is package equipment. With the use of package software and its equipment, the parameters can be sent back to the computers.
In this article, series of experiments are conducted to confirm the usability of the system, which include water tank underwater experiment and yacht dock underwater experiment.
Contents

Chapter 1 Introduction…………………………………………………1
1.1 The emergence background of offshore Cage Aquaculture...1
1.2 Cage structure………………………………………………….4
1.3 Temperature and pressure sensor and flow meter…………..5
Chapter 2 Theory………………………………………………………..7
2.1 Temperature sensor…………………………………...……….7
2.1.1 Temperature IC………………………………….….........7
2.1.2 Comparison of all kinds of temperature sensors.……...8
AD590 readout circuit……………………………………..8
2.2 ECOS pressure transducer………………………………........9
2.3 Flow meter…………………………………………………….12
2.4 Signal processing………………………………………...........12
◎ Data transmission of UART…………………………………..15
◎ The synchronous issue of UART data transmission………...15
◎ Transmission speed……………………………………………15
◎ The working way of 8051 UART……………………………..16
◎ Special control register SCON (serial control)………………17
◎ The setup of baud rate for series transmission……………...17
◎ UART mode 1………………………………………………….17
◎ RS232 interface………………………………………………..18
◎ Introduction to ADC0804……………………………………..19
2.5 Entire system structure………………………………………19
Chapter 3 Experiment………………………………………………...21
3.1 AD590 readout circuit………………………………………..21
3.2 ECOS readout circuit………………………………………...23
3.3 8051 control program……………………………...................23
3.4 LabView……………………………………………………….28
Chapter 4 Application of temperature and pressure sensors……….30
4.1 Introduction………………………………………………...…30
4.2 Cage structure…………………………………………….......30
4.3 Real measurement at the water tank………………………..31
4.4 The real measurement at the yacht dock…………………....33
4.5 Accuracy calculation………………………………………….35
4.6 Application in the cage aquaculture…………………………36
Chapter 5 Conclusion………………………………………………..38














Figure contents

Fig. 1-1 Forecast table of the fishery production capacity around
the world (1995)………………………………………………48
Fig. 1-2 Fishery production capacity table for Taiwan in the
recent Decade………………………………………………....49
Fig. 1-3 Fishery production capacity table for Taiwan in 2006
and 2007………………………………………………………50
Fig. 1-4 AD590 circuit………………………………………………….51
Fig. 1-5AD590 output curve…………………………………………...52
Fig. 1-6 ECOS appearance…………………………………………….53
Fig. 2-1 Temperature measurement principle of temperature
sensing IC……………………………………………………..54
Fig. 2-2 Appearance of DS1821 (PR35) temperature IC…………….55
Fig. 2-3 Appearance of DS1821 (SO) temperature IC……………….55
Fig. 2-4 AD590 spec……………………………………………………56
Fig. 2-5 AD590 appearance……………………………………………56
Fig. 2-6 Comparison table of all kinds of temperature meters……...57
Fig. 2-7 AD590 signal readout circuit………………………………...58
Fig. 2-8 ECOS signal readout circuit…………………………………59
Fig. 2-9 ECOS load voltage readout circuit…………………….…….59
Fig. 2-10 A correlation chart of current versus water depth………..60
Fig. 2-11 Control process………………………………………………61
Fig. 2-12 The clock for series transmission of data ”10100010”…….62
Fig. 2-13 The standard format for UART to transmit one byte…….62
Fig. 2-14 CPU readout process………………………………………..63
Fig. 2-15 Series transmission and receiving timing chart of
MODE 1……………………………………………………...64
Fig. 2-16 The receiving and transmission flow chart of series
transmission…………………………………………………65
Fig. 2-17 ADC0804 angle connection chart…………………………..66
Fig. 2-18 ADC0804 circuit diagram…………………………………..67
Fig. 2-19 Signal flow chart…………………………………………….68
Fig. 3-1 AD590 readout circuit layout chart………………………….69
Fig. 3-1.1 AD590 readout circuit real chart…………………………..70
Fig. 3-2 The output voltage at different wire lengths and at room
temperature for the sampling of four sets of temperature
sensors…………………………………………………………71
Fig. 3-3 Measurements at three different temperatures for the sampling of four sets of temperature sensors……………….72
Fig. 3-4 Measurement in 40℃ of water for the sampling of four
sets of sensors…………………………………………………73
Fig. 3-5.1 Four sets of sensors are sampled for the measurement
of error at room temperature……………………………..74
Fig. 3-5.2 Four sets of sensors are sampled for the measurement
of error at 40℃……………………………………………..75
Fig. 3-6 For ECOS readout circuit (differential amplifier) of
pressure sensor, please refer to figure 2-9…………………...76
Fig. 3-7 The output voltage of pressure sensor at room
temperature at different wire lengths……………………….77
Fig. 3-8 Error bar of the output of pressure sensor………………….78
Fig. 3-9 The output of pressure sensor; in the upper figure,
it is in static water, in the lower figure, it is in water
flow…………………………………………………………….79
Fig. 3-10 Scanning circuit……………………………………………..80
Fig. 3-11 Keilc scanning flow test……………………………………..81
Fig. 3-12 Scanning result of super terminal………………………….82
Fig. 3-13 LabView control……………………………………………..83
Fig. 3-14 LabView control part……………………………………….84
Fig. 3-15 LabView interface part……………………………………..90
Fig. 3-16 LabView control test diagram……………………………...93
Fig. 4-1 Multi-cage system illustration……………………………….94
Fig. 4-2.1 Cage structure illustration…………………………………95
Fig. 4-2.2 Real diagram of cage structure……………………………95
Fig. 4-3 Real diagram of the control circuit………………………….96
Fig. 4-4 Real diagram showing the connection of the control
circuit to the computer……………………………………….97
Fig. 4-5.1 The real water sinking experiment of large and small
tanks………………………………………………………...98
Fig. 4-5.2 Real water sinking experiment for the bottom
placement of the master and slave cage of the
large water tank……………………………………………98
Fig. 4-6 The real water sinking experiment of the large water
tank……………………………………………………………99
Fig. 4-7.1 The temperature error bar measurement of cage 1
at underwater environment of 20.2℃; the average temperature is 20.2℃ and error is ±0.3℃………………100
Fig. 4-7.2 The temperature error bar measurement of cage 2;
the average temperature is 20.2℃ and error is ±0.3℃...101
Fig. 4-7.3 The temperature error bar measurement of cage 3;
the average temperature is 20.2℃ and error is ±0.3℃...101
Fig. 4-7.4 The temperature error bar measurement of cage 4;
the average temperature is 20.2℃ and error is ±0.3℃...102
Fig. 4-7.5 The temperature error bar measurement of cage 5;
the average temperature is 20.2℃ and error is ±0.3℃...102
Fig. 4-8 Pressure Error Bar measurement………………………….103
Fig. 4-9.1 The real measurement for the simulation of the
movement of cage system to yacht dock………………...104
Fig. 4-9.2 Put the cage into water……………………………………104
Fig. 4-9.3 After cage is placed into the water……………………….105
Fig. 4-10 The real measurement of temperature and pressure
of bottom placement of cage in the yacht dock…………..106
Fig. 4-11 The real measurement of water flow and water speed
of bottom placement of cage in the yacht dock…………..107
Fig. 4-12 The real measurement of water flow and water speed
of bottom placement of cage in the yacht dock…………..107
Fig. 4-13.1 The real measurement of water temperature and
pressure after the increase of the height of cage in
the yacht dock…………………………………………...108
Fig. 4-13.2 The real measurement of water temperature of cage
at five different water depths of 2.9M, 2.5M, 1.8M,
1.0M, 0.3M in the yacht dock. Average temperature at
2.9M is 20.4℃, average temperature at 2.5M is 20.4℃,
average temperature at 1.8M is 20.4℃, average
temperature at 1.0M is 20.5℃, average temperature at
0.3M is 20.4℃……………………………………………..108
Fig. 4-14.1 Bottom-placement measurement in the yacht dock…...109
Fig. 4-14.2 The measurement results of temperatures in the
master cage in the cage bottom-placement
measurement in the yacht dock………….......................109
Fig. 4-14.3 The measurement results of temperatures in the
second cage in the cage bottom-placement
measurement in the yacht dock………………………...110
Fig. 4-14.4 The measurement results of temperatures in the
third cage in the cage bottom-placement
measurement in the yacht dock………………………….110
Fig. 4-14.5 The measurement results of temperatures in the
fourth cage in the cage bottom-placement
measurement in the yacht dock………………………….111
Fig. 4-14.6 The measurement results of temperatures in the
fifth cage in the cage bottom-placement
measurement in the yacht dock………………………….111
Fig. 4-14.7 The temperature measurement result distribution
of five sets of cages in the bottom-placement
measurement in the yacht dock………………………...112
Fig. 4-15.1 Measurement at 2M water depth in the yacht dock…...113
Fig. 4-15.2 The measured temperatures of the cages at 2M
water depth in the yacht dock…………………………..113
Fig. 4-16.1 Measurement at 1M water depth in the yacht dock…...114
Fig. 4-16.2 The measured temperatures of the cages at 1M
water depth in the yacht dock…………………………..114
Fig. 4-17 In the yacht dock, after the cage is measured, it is
placed on the shore side for measurement………………..115
[1] 俞克儉,“海域箱網設計之研究”,國立臺灣海洋大學漁業科學學系博士學位論文,民國八十九年

[2] 林彥杉,“簡易無驚擾性魚隻大小自動量測器之設計”,國立嘉義大學生物機電工程學系碩士班,民國九十二年

[3] Lee, H. H. and P.W. Wang . A preliminary study on the free-suspended type fish-farming cage subjected to waves. Proc.19th Conf. on ocean engineering in Republic of China , pp.292-297, 1997

[4] Jerhune, J.S. Increasing yields of channel catfish using a combination cage and open pond production systems. World aquacult. –soc. 23(1): 77-82, 1992

[5] Banchini, M. L.. Project for the development on the Silmountains. RIV.-IDROBIOL, 29(1):123-130, 1990

[6]http://www.fa.gov.tw/chnn/statistics_publish/report/96fayrrep.pdf

[7]http://www.datasheetcatalog.org/datasheet/analogdevices/846215477AD590_b.pdf

[8] 楊善國,“感測與度量工程”台北市全華,2003

[9] 涂嘉宇,“溫度感測器結合ZigBee技術應用於護理之家之研究”,亞洲大學資訊工程學系碩士班,民國九十五年

[10] 陳瑞和,“感測器”,初版八刷,育有圖書有限公司,台北市,民國八十七年

[11]http://elearning.stut.edu.tw/mechelec/myweb/%E7%AC%AC%E5%9B%9B%E7%AB%A0.htm

[12] 蓋永峰,“微型壓阻式壓力感測器製作之研究”,國立成功大學工程科學系碩士班,民國八十九年

[13] 郭�琝說A “微型壓力感測器陣列之設計、製作及訊號處理”,國立成功大學機械工程學系碩士班,民國九十二年

[14] W. B. Scott, “Micro-Machines Hold Promise for Aerospace,” Aviation Week & Space Technology, pp.36-39, 1993

[15] K. E. Peterson, “Silicon as A Mechanical Material,” Proceeding of the IEEE, 70.5, p. 420,1982

[16] H. Guckel, and D. Burns, “Planar Processed Polysilicon Sealed Cavities for Pressure Transducers Array,” pp. 223-225, IEDM, 1984

[17] G. S. Chung, S. Kawahito, M. Ishida, and T. Nakamura, “Novel Pressure Seneors with Kultilayer SOI Structure,” Electronics Leters, 26, pp. 775-777, 1990.

[18] S. Susumu, and K. Shimaoka, “Surface Micromachined Micro-Diaphragm Pressure Sensors,” Solid-State Sensors and Actuators, pp. 188-191, 1991

[19] J, Fukang, Y. Y. Tai, W. Walsh, T. Tom, G. B. Lee, and C. M. Ho, “A Flexible MEMS Technology And Its First Application To Shear Stress Sensor Skin,” IEEE, MEMS-97, pp. 465-470, 1997.

[20] E. Kalvesten, “The First Surface Micromachined Pressure Sensor for Cardiovascular Pressure Measurement,” IEEE, MEMS-98, pp. 574-579, 1998

[21] ALEC, Cable-type Electromagnetic Current Meter, Calibration sheet

[22] 楊明豐,“8051單晶片實作入門與應用”,初版,台北市,第三波資訊,2002

[23] 吳志元,“8051微控制器設計泛用型遠端監視系統”,國立中正大學電機工程研究所碩士班,民國八十八年

[22] 陳昭綾、盧正興編著,“8051單晶片微電腦應用”,高立圖書有限公司,1998

[23] 林伸茂編著,“8051單晶片徹底研究-基礎篇”,旗標出版有限公司,1993

[24] 鄧錦城,“8051單晶片實作寶典”,宏友圖書開發股份有限公司,台北市,民國九十一年

[25] 蔡朝洋,“單晶片微電腦8051/8951原理與應用”,八版一刷,全華科技圖書股份有限公司,台北市,2006年

[26] 楊志仁,“智慧型環境偵測機器人之開發”,國立雲林科技大學電機工程學系碩士班,民國九十七年

[27] D.L. Hall and J.Llinas, “An Introduction to Multisensor Data Fusion”, Proceedings of IEEE, Volume 85, Issue 1, PP(s):6-23, Jan. 1997

[28] Kokar, M.and Kim, K.H, “Review of Multisensor Data Fusion Architectures and Technigues,”, Proceedings of the 1993 IEEE International Symposium on Intelligent Cortrol, pp:261-266, Aug. 1993

[29] Darasathy, B.V, “Sensor Fusion Potential Exploitation-Innovative Architectures and Illustrative Applications,” Proceedings of the IEEE Volume 85, Volume 85, Issue 1, pp:187-190, Jan. 1997

[30] R.C. Luo, “Sensor technologies and microsensor issues for mechatronics systems,” Mechatronics, IEEE/ASME Transactions on Volume 1, Issue 1, pp:61-64, March 1996

[31] Bloch .I, “Information combination operators for data fusion: a comparative review with classification,” Systems, Man and Cybernetics, Part A, IEEE Transactions on Volume 26, Issue 1, pp:144-145, Jan. 1996

[32] 陳永森、倪聖勛“移動式起動機安全監控系統之研究”,民國九十年

[33] 溫世達“鈦酸鉛鈣焦電薄膜紅外線陣列式熱影像感測元件製作及熱絕緣結構之研究”,民國九十六年

[34] 柯直昀“鈦酸鉛鈣焦電薄膜紅外線陣列高敏度熱影像感測系統之製作研究”,民國九十五年

[35] 賴勇成“鈦酸鉛鈣焦電薄膜紅外線陣列式熱影像感測元件之製作及特性分析”,民國九十四年

[36] 賴麒文,“C與8051單晶片韌體設計-實務篇”,文魁資訊股份有限公司,民國九十四年

[37] 張義和,“主流電腦輔助設計 Protel SE 修訂版”,二版三刷,全華科技圖書股份有限公司,台北市,2004年

[38] 陳哲生,“適用於生醫感測器之自動化多通道訊號檢測電路及系統設計”,中原大學電子工程研究所碩士班,民國九十一年

[39] 周靜娟、吳明瑞、顏培仁,“圖控程式與自動量測使用LabView7.X”,全華科技圖書股份有限公司,初版一刷,民國九十三年

[40] 王國禎、楊烽正、余文俊編著,“視窗介面微電腦控制實務”,初版一刷,全華科技圖書股份有限公司,台北市,民國九十三

[41]http://wiki.mbalib.com/w/index.php?title=%E9%A2%84%E6%B5%8B%E7%B2%BE%E5%BA%A6&variant=zh-tw

[42]http://www.fao.org/fi/website/MultiQueryAction.do?filterBy=publication_set.dc%3Adate.2008 (FAO)

[43]http://www.fa.gov.tw/chnn/statistics_publish/report/?PHPSESSID=194c78e32487d1552de59c2727159af2 (行政院農業委員會漁業署)

[44] Trafag,ECOS datasheet

[45] 曹永偉,“感測器技術入門”台北市全華,2001,6-7頁圖6-3

[46] http://pdfserv.maxim-ic.com/en/ds/DS1821.pdf

[47] Sedra. Smith,“微電子電路”,第四版

[48] http://tc-sfa.ee.ntou.edu.tw/8051/lab5-1.pdf

[49] http://www.national.com/ds/DC/ADC0801.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔