(3.238.235.155) 您好!臺灣時間:2021/05/16 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏堂育
研究生(外文):Wei Tang-Yu
論文名稱:應用負微分電阻暨雙井共振穿透效應研製低功率矽基開關元件
論文名稱(外文):The Study and Fabrication of Si-based Switching Devices by the Negative Differential Resistance and Double-Well Resonant Tunneling Effects
指導教授:何志傑何志傑引用關係
指導教授(外文):Jyh-Jier Ho
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:158
中文關鍵詞:共振穿隧二極體負微分電阻異質結構峰谷電流比微波元件
外文關鍵詞:Resonant Tunneling DiodeNegative Differential ResistanceHetero-structuresPeak-to-Valley-Current-RatioMicrowave Components
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,吾人首先成功的模擬SiO2/Si異質結構中的負微分電阻(NDR)現象,並應用負微分電阻現象研製雙井矽基RTD元件(DWRTD)。初步先提出模擬單峰值負微分結構之I-V特性,並利用並聯電路型式,來獲得雙峰值的共振開關元件。
本文研製出各種負微分電阻結構元件,包括SiO2/n-Si/SiO2/n-Si (SW n-Si), SiO2/p-Si/SiO2/n-Si (SW p-Si), SiO2/n-Si/SiO2/n-Si/SiO2/ n-Si (DW n-Si) 異質結構,這三種NDR元件在順偏之峰谷電流比值(peak-to-valley current ratio, PVCR)分別為1.03 ( ),1.67 ( )和1.26 ( )。
  PN接面結構應用於研製溫度感測效應,經室溫至100℃環境下所量測的特性變化。因此,本研究研製SiO2/n-Si/SiO2/p-Si (SW n-Si) 之異質結構NDR元件,可當作溫度感測元件。在溫度分別為25℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃環境變化下,所測得阻值有明顯變化且分別為2.18KΩ、2.1KΩ、2.02KΩ、1.96KΩ、1.81KΩ、1.75KΩ、1.689KΩ、1.61KΩ,即RT敏感值為0.008。
   吾人使用太陽能驅動兩個串聯RTD元件,其中Cp所量測結果為5.41165pF,並經計算得知時間常數約為2.405ns,而實際量測開關訊號結果之時間常數約為2.5ns與計算值符合。
   最後,吾人利用RTD元件中低功率、低漏電流、高峰谷值(PVCR)特性,在數位/類比轉換器、微波共振元件、光快速開關元件、分頻電路等產品發展上亦有助益
In this thesis, we successfully simulate NDR phenomenon in SiO2/Si/SiO2 hetero-structures and use NDR (negative differential resistance) phenomenon to manufacture DWRTD (double well resonant tunneling diode). We initially propose simulated I-V character of one-peak negative differential resistances and use parallel-connected NDR circuit to get multi-peak negative differential resistance.
This thesis fabricates all kinds of NDR structure devices including SiO2/n-Si/SiO2/n-Si (SW n-Si), SiO2/p-Si/SiO2/n-Si (SW p-Si), and SiO2/n-Si/SiO2/n-Si/SiO2/n-Si (DW n-Si) hetero-structures, The typical peak-to-valley current ratios (PVCRs) at forward and reverse biases for these NDR diodes are 1.03, 1.67, and 1.26 respectively.
This thesis shows the variation of P/N structure characteristic when P/N structure is applied to studying temperature sensing effect under room temperature to 100℃. Therefore, this research manufactures SiO2/n-Si/SiO2/p -Si (SW n-Si) that can be used as temperature sensing device. Under 25℃, 40℃, 50℃, 60℃, 70℃, 80℃, 90℃, and 100℃, the resistance is 2.18KΩ, 2.1 KΩ, 2.02 KΩ, 1.96 KΩ, 1.81 KΩ, 1.75KΩ, 1.68KΩ, and 1.61KΩ, respectively. And resistance Sensitivity of RT is 0.008. The resistance shows the obvious variation.
The oscillator device of the circuit employs two RTD connected serially. Cp is 5.41165 pF, time constant is about 2.405 ns after calculated, and time constant of signal is about 2.5 ns. The time constant of signal corresponds to calculation value.
Finally, we apply the characteristics of RTD devices that are low power, low leakage current, and large Peak-to-Valley-Current-Ratio (PVCR) to digital/ analog converter, microwave resonant component, light speed switch component, separated frequency circuit, etc. On the development of these products, the characteristics of RTD devices are quite helpful.
Abstract .................................................I
Contents .................................................V
Chapter 1 Introduction............................................. 1
Chapter 2 Fundamental Theory............................. 9
2.1 Theoretical analyses of NDRD......................... 9
2.2 Tunneling Through a Single Barrier................... 9
2.3 Silica Oxidation of Calculating QMWTE................12
2.4 Double-Barrier Tunneling of Transmission Function....16
2.5 Double-Barrier Current Density Formula...............27
Chapter 3 Simulations and Analysis...................... 32
3.1 Introduction........................................ 32
3.2 Simulation Steps.................................... 33
3.3 Simulation Results and Analysis......................35
Chapter 4 Experiment and Measurement Apparatus.......... 70
4.1 Introduction........................................ 70
4.1.1 Resonant Tunneling in silicon based materials of Si/SiO2................................................. 70
4.1.2 Resonant Tunneling devices process equipment...... 70
4.2 Experiment Flow..................................... 71
4.2.1 Resonant Tunneling Diode of based Experiment Flow.................................................... 71
4.2.2 Various Types of Experiments Flow Explained... 73
4.3 Experiment Apparatus................................ 78
4.3.1 DC/RF magnetron sputtering........................ 78
4.3.2 Vacuum Coater System.......................... 80
4.3.3 Exposure and Photolithography Equipment........... 82
4.4 Measurement Apparatus............................... 83
4.4.1 Current-Voltage Measurement Apparatus............. 83
4.4.2 Hall Effect Measurement System and Four Point Probe Meter................................................... 84
4.4.3 Optical Thin-Film Measurement Instrument and System Microscope...............................................85
4.4.4 Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS)............................86
Chapter 5 Results and Discussions........................90
5.1 Results and Analysis of Silicon and SiO2 Thin Films................................................... 90
5.1.1 Deposition rate comparison between Silicon and SiO2.................................................... 90
5.1.2 X-ray Diffraction (XRD) Analysis.................. 93
5.1.3 Raman Spectrum System for SiO2 layer Analysis..... 95
5.1.4 Energy Dispersive X-ray Spectrometer (EDS) Analysis................................................ 96
5.2 Results and Analysis of Resonance Tunneling Devices.100
5.2.1 Analysis of the SiO2/p-Si/SiO2/n-Si Device Characteristic..........................................100
5.2.2 Analysis of the n-Si/SiO2/n-Si/SiO2/n-Si/SiO2 Device Characteristic..........................................107
5.2.3 Analysis of the p-Si/SiO2/n-Si/SiO2 Device Characteristic..........................................114
5.2.4 Analysis of the n-Si/SiO2/n-Si/SiO2 Device Characteristic..........................................127
5.2.5 Temperature-Dependent I–V Characteristics of the p-Si/SiO2/n-Si Diodes ....................................136
5.2.6 Application of the NDR Oscillator Devices is run by Solar- driven...........................................142
Chapter 6 Conclusion....................................148
6.1 Conclusion..........................................148
Reference...............................................152
[1] C. N. Lien, H. L. Hwang, “共振穿隧元件利用矽量子點埋在氮化矽的矽基之製作”, 國立清華大學/電子工程研究所/92/碩士/092NTHU5428027.
[2] L. L. Chang, L. Esaki, W. E. Howard, and R. Ludeke, “The growth of a GaAs-GaAlAs superlattice”, J. Vac. Sci. Technol, Vol.10, No.1, pp.11-16, 1973.
[3] T. Y. Wei, C. C. Yang, J. J. Ho, S. H. Chang, “The Study of Negative Differential Resistance Effect on Si-based RTID with Double Wells”, Proceedings of International Conference on Optical and Photonics in Taiwan, Sat-S8-04, 2008.
[4] M. Hackel, H. Kosina, and S. Selberherr, “Electron Transport in Silicon Dioxide at Intermediate and High Electric Fields”, Simulation of Semiconductor Devices and Processes, Vol.5 Edited by S. Selberherr, H. Stippel, E. Strasser - September 1993.
[5] Simon M. Sze, Semiconductor Devices: Physics and Technology, 2nd Edition, p.245.
[6] A. N. Khondker, M. R. Rezwan Khan, and A. F. M. Anwar, “Transmission line analogy of resonance tunneling phenomena: The generalized impedance concept”, Appl. Phys. Letters, Vol.63, pp.5191-5193, 1988.
[7] Schrodinger, Erwin (December 1926). “An Undulatory Theory of the Mechanics of Atoms and Molecules”, Phys. Rev. Vol.28, NO.6 pp.1049–1070, 2006.
[8] S. Datta, Electronic Transport in Mesoscopic Systems. (Cambridge University Press, New York, 1995).
[9] John S. Townsend, A Modern Approach to Quantum Mechanics (University Science Books, Sausalito, CA, 2000), pp.147-188, 2000.
[10] G. G. Qin, Y. Chen, G. Z. Ran, B. R. Zhang, S. H. Wang, G. Qin, Z. C. Ma, W. H. Zong and S. F. Ren, “Electroluminescence from Au/(SiO2 /Si/SiO2)nanometer double barrier/p-Si structures and its mechanism”, Appl. Phys. Letters, pp.11751–11761, 2001.
[11] S. Collins, D. Lowe, and J. R. Barker, “Resonant tunneling heterostructures: Numerical simulation and qualitative analysis of the current density”, J. Appl. Phys., Vol.63, pp.142-149, 1988.
[12] Y. Ando and T. Itoh, “Calculation of transmission tunneling current across arbitrary potential barriers”, J. Appl. Phys., Vol.61, pp.1497-1502, 1987.
[13] R. Tsu and L. Esaki, “Tunneling in a finite superlattice”, Appl. Phys. Letters, vol.22, pp.562-564, 1973.
[14] J. N. Schulman, H. J. De Los Santos, and D. H. Chow, “Physics-Based RTD Current-Voltage Equation”, IEEE Electron Device Letters, Vol.17, No.5, pp.220-222, 1996.
[15] Z. Yan, M. J. Deen, “New RTD Large-Signal DC Model Suitable for PSPICE”, IEEE Transactions on Computer-AIDED Design of Integrated Circuits and System, Vol.14, No.2, 1995.
[16] B. Zhang, K. J. Chen, R. Gang, R. M. M. Chen, ”novel RTD-HEMT-RTD structure based on simulations”, IEEE Elecrron Device Letters, Vol.1, No.2, pp.178 -181, 1999.
[17] W. H. Ku, “Negative Resistance Devices Using A Multiple Number of Tunnel Diodes or Varactors”, IEEE Elecrron Device Letters, Vol.14, No.4, pp.478 -483, 1966.
[18] S. N. Mohammad, G. Fiorenza, A. Acovic, J. B. Johnson and R. L. Carter, “FOWLER-NORDHEIM Tunneling of Carriers in MOS Transistors: Two-Dimensional Simulation of Gate Current Employing Fielday”, Solid-State Electrontics, Vol.38, No.4, pp.807-814, 1995.
[19] J. P. Sun, G. I. Haddad, P. Mazumder, J. N. Schulman, “Resonant Tunneling Diodes: Models and Properties”, Proceedings of the IEEE, Vol.86, No.4, 1998.
[20] Y. Ishikawa, T. Ishihara, M. Iwasaki and M. Tabe, “Negative differential conductance due to resonant tunnelling through SiO2/singlecrystalline-Si double barrier structure”, Electronics Letters IEEE, Vol.37, No.19, pp.1200-1201, 2001.
[21] L.W. Yu, K. J. Chen, J. Song, J. M. Wang, J. Xu, W. Li, X. F. Huang, “Coulomb blockade induced negative differential resistance effect in a self-assembly Si quantum dots array at room temperature”, Thin Solid Films Science Direct, Vol.515, pp.5466–5470, 2007.
[22] N. P. Guisinger, R. Basu, M. E. Greene, A. S. Baluch, and M. C. Hersam, “Characterization of Silicon-Base Molecular Resonant Tunneling Diodes with Scanning Tunneling Microscopy”, IEEE Elecrron Device Letters, Vol.1, pp.195-197, 2004.
[23] R. L. Wang, Y. K. Su, Y. H. Wang, K. F. Yarn, “Negative differential resistance of a delta-doping-induced double-barrier quantum-well diode at room temperature”, IEEE Electron Device Letters, Vol.11, No.10, pp.428-430, 1990.
[24] N. Koshida, K. Ueno, X. Sheng, “Field-induced functions of porous Si as a confined system,” Journal of Luminescence, Vol.80, No.1-4, pp.37-42, 1998.
[25] J. H. Tsai, “High-performance AlInAs/GaInAs d-doped HEMT with negative differential resistance switch for logic application”, Solid-State Electronics Vol. 48, No. 1, pp.81-85, 2004.
[26] R. A. Deutschmann, W. Wegscheider, M. Rother, M. Bichler, G. Abstreiter, “Negative dierential resistance of a 2Delectron gas in a 1 Dminiband”, Physica E: Low-dimensional Systems and Nanostructures, Vol.7, No.1-2, pp.294-298, 2000.
[27] K. H. Wu, Y. K. Fang, J. J. Ho, T. J. Chen and J. D. Hwang, “Single SiC/Si heterostructure negativediff erential-resistance diode for resistivefuse applications”, Electronics Letters IEEE, Vol.33, No.21, pp.1824-1825, 1997.
[28] B. Xie, C. Y. Xue, W. D. Zhang, J. J. Xiong, B. Z. Zhang, J. Hu, “A GaAs Micromachined Accelerometer With Frequency Output Based on Resonant Tunneling Diodes”, IEEE Solid-State and Integrated Circuit Technology, International Conference on 23-26, pp.545-547, 2006.
[29] H. Mizuta, T. Tanoue, S. Takahashi, “A New Triple-Well Resonant Tunneling Diode with Controllable Double-Negative Resistance”, Electron Devices, IEEE Transactions, Vol.35, No.11, 1988.
[30] N. Muramatsu, H. Okazaki, T. Waho, “A Novel Oscillation Circuit Using a Resonant-Tunneling Diode”, Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26, Vol.3, pp.2341-2344, 2005.
[31] S. R. Li, P. Mazumder, L. O. Chua, “Cellular Neura/Monlinear Networks Using Resonant Tunneling Diode”, Nanotechnology, IEEE Conference on 16-19, pp.164-167, 2004.
[32] L. Khriachtchev, S. Novikov, O. Kilpela, “Optics of Si/SiO2 superlattices: Application to Raman scattering and photoluminescence measurements”, Journal of Applied Physics, Vol.87, No.11, 2000.
[33] E. L. Garfunkel, Evgeni? Leonidovich Gusev, Alexander Vul', “Fundamental aspects of ultrathin dielectrics on Si-based devices”, North Atlantic Treaty Organization. Scientific Affairs Division, pp.50-52, 1998.
[34] K. B. Sundaram, M. J. Deen, W. D. Brown, “Silicon Nitride and Silicon Dioxide Thin Insulating Films: Proceedings of the Fifth International Symposium”, The Electrochemical Society, pp.123-124, 1999.
[35] J. Da?browski, H. J. Mussig, “Silicon surfaces and formation of interfaces: basic science in the industrial world”, World Scientific, pp.443-444, 2000.
[36] M. W. Dashiell, R. T. Troeger, S. L. Rommel, T. N. Adam, P. R. Berger, J. Kolodzey, A. C. Seabaugh, and R. Lake, “Current Voltage Characteristics of High Current Density Silicon Esaki Diodes Grown by Molecular Beam Epitaxy and the Infuence of Thermal Annealing”, IEEE Transactions on Electron Devices, Vol.47, pp.1707-1714, 2000.
[37] K. Ismail, B. S. Meyerson, and P. J. Wang., “Electron Resonant Tunneling in Si/SiGe Double Barriers Diodes”, Applied Physics Letters, Vol.59, pp.973-975, 1991.
[38] S. Y. Chung, N. Jin, R. E. Pavlovicz, P. R. Berger, R. Yu, Z. Fang, and P. E. Thompson, “Annealing effect on defects in Si grown by low temperature molecular beam epitaxy and its attribution to the excess currents in Si-based tunnel diodes”, J. Appl. Phys., Vol.96, No.1, pp.747–753, 2004.
[39] K. Morita, H. Sorada, and K. Ohnaka. “A Novel Si Interband Tunneling Diode Through a Thin Oxide”, Proceedings of Device Research Conference 1997, 1997.
[40] P. See and D. J. Paul. “The scaled performance of Si/Si1-xGex resonant tunneling diodes”, IEEE Electron Device Letters, Vol.22, pp.582-584, 2001.
[41] S. L. Rommel, “Si-based tunnel diodes for integrated circuit applications", Ph. D. Dissertaion University of Delaware, 2000.
[42] H. Jorke, H. Kibbel, K. Strohm, and E. Kasper., “Forward-bias characteristics of Si bipolar junctions grown by molecular beam epitaxy at low temperatures”, Applied Physics Letters, Vol.63, pp.2408-2410, 1993.
[43] C. S. Barrett, “Structure of Metals”, READ BOOKS, pp.142-143, 2008.
[44] M. Lazzeri and F. Mauri, “ First principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2”, Applied Physics Letters, pp.71-75 ,2002.
[45] S.G. Kurkin, Y.V. Plotnikov, M.D Efremov, and, G.N. Kamaev, “Carrier transport in Si/SiOx/Si structures by direct wafer bonding”, IEEE Electron Device Letters, Vol.6, pp.37-38, 2005.
[46] T. C. L. Gerhard Sollner, “Current Directions In Resonant Tunneling Research”, Vol. 10-12, pp.336-346, 1987.
[47] H. K. Mst, M. Shahjahan, K. Sawada, M. Ishida, “Capacitance–voltage characteristics and switching time of double barrier resonant tunneling diode fabricated with epi-Si and γ-Al2O3”, Science Direct, Vol.36, pp.123-127, 2007.
[48] E. Ozbay, D.M. Bloom, D.H. Chow, J.N. Schulman, “1.7-ps, Microwave, Integrated-Circuit-Compatible InAs/AlSb Resonant Tunneling Diodes”, Electron Device Letters, IEEE, Vol.14, No.8, 1993.
[49] . A. Berashevich, A. L. Danilyuk, A. N. Kholod and V. E. Borisenko, “Carrier transport and related phenomena in nanosize periodic silicon/insulator structures”, Science Direct, Vol.101, No.1-3, pp.111-118, 2002.
[50] M. Morimoto, T. Mogami, H. Okabayashi and E. Nagasawa, “SiO2 Planarization by Two Step RF Bias Sputtering”, Electron Device Letters, IEEE,Vol.11-15, pp.100-101, 1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top