跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/04 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉康平
研究生(外文):Kang-Ping Liu
論文名稱:化合物半導體與聚光型太陽能電池之研究
論文名稱(外文):Investigation of Compound Semiconductor and Concentrator Solar Cells
指導教授:羅文雄羅文雄引用關係
指導教授(外文):Wen-Shiung Lour
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:100
中文關鍵詞:太陽能電池化合物半導體多重接面穿隧二極體砷化鎵聚光
外文關鍵詞:solar cellcompound semiconductormulti-junctiontunnel diodeGaAsconcentration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們研究以化合物半導體為基礎的太陽能電池。在單接面太陽能電池中,我們探討窗層配合蝕刻技術形成網狀窗對於元件的影響,得知網狀窗不僅增加光吸收效率,而且減少串聯電阻,可見網狀窗對於太陽能電池為其重要因素。
在多重接面中,我們也分別製作出單接面、雙重接面、三重接面太陽能電池,在one sun模擬光源照射下單接面、雙重接面、三重接面的效率與填充因子分別為3.11%、10.95%、18.78% 與0.534、0.771、0.803,並分析各接面對於太陽能電池之影響。為了探討在聚光下對於元件所造成的影響,我們對指狀電極遮蔽率(5.53%、6.61%、6.66%)及熱蒸鍍電極之厚度(0.2 μm、2.5 μm、3 μm)作特性分析。
最後,我們探討穿隧二極體電阻效應,以及雙重接面、三重接面在未照光之下,對於溫度由300 K升至353 K所造成元件特性之影響。
In this thesis, we study compound semiconductor based and concentrator solar cells. The GaAs solar cells with different window shape were successfully fabricated. The window layer affects both the optical absorption efficiency and the series resistance seriously.
In the multi-junction solar cells, we have successfully fabricated and investigated single-junction, double-junction and triple-junction solar cells. The measured conversion efficiency (η) and fill factor (FF) are 3.11, 10.95, 18.78% and 0.534, 0.771, 0.803, respectively. In order to investigate how concentration-light influent the device does, the shading loss (5.53, 6.61, 6.66%) and the thermal evaporation (0.2, 2.5, 3μm) were measured and analyses.
Finally, we have successfully fabricated and investigated the double-junction and triple-junction solar cells as well as the tunnel diodes. Furthermore, temperature characteristics of the open-circuit voltage were investigated within the range from 300 K to 353 K. In addition, temperature affects the series resistances (Rs) of the tunnel diode.
ABSTRACT Ⅲ
TABLE CAPTIONS Ⅴ
FIGURE CAPTIONS Ⅵ

Chapter 1. Introduction 1

Chapter 2. Effects of Window Layer on GaAs-based Solar Cell
2-1 Introduction 4
2-2 Device Structure and Fabrication 6
2-3 Experimental Results and Discussion 11
2-3-1 Effects of Surface Quality 12
2-3-2 Characteristics of the Open-Circuit Voltage 12
2-3-3 Series Resistance Effect 13
2-3-4 Conversion Efficiency and Output Power Density 14
2-4 Summary 17

Chapter 3. Performance of Sub-Cells in Triple-Junction Solar Cell
3-1 Introduction 18
3-2 Device Structure and Fabrication 19
3-2-1 Fabrication of Triple-Junction Solar Cell 22
3-2-2 Fabrication of Top Diode 25
3-2-3 Fabrication of Double-Junction Solar Cell 26
3-2-4 Fabrication of Middle Diode 29
3-2-5 Fabrication of Single-Junction Solar Cell and Bottom Diode 30
3-3 Experimental Results and Discussion 31
3-3-1 Performance of Triple-Junction Solar Cell 31
3-3-2 Performance of Double-Junction Solar Cell 33
3-3-3 Performance of Single-Junction Solar Cell and Bottom Diode 34
3-3-4 Performance of Middle Diode and Top Diode 35
3-4 Summary 37

Chapter 4. Characteristics of Concentrator Triple-Junction Solar Cell
4-1 Introduction 38
4-2 Device Structure and Fabrication 39
4-2-1 Fabrication of Triple Junction Solar Cell 41
4-2-2 Fabrication of Double Junction Solar Cell 44
4-3 Experimental Results and Discussion 47
4-3-1 Characteristics of Triple-Junction Solar Cell under Concentration 47
4-3-2 Characteristics of Double-Junction Solar Cell under Concentration 55
4-3-3 Temperature Characteristics of the Triple-Junction and Double-Junction Solar cell 61
4-3-4 Temperature Characteristics of the Tunnel Diodes 63
4-4 Summary 65

Chapter 5. Conclusion and Prospect
5-1 Conclusion 66
5-2 Prospect 67
References 68
Publication List
[1]R. A. Sintom, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5 percent silicon concentrator solar cells,” IEEE Electron Device Lett., vol. 7, pp. 567-569, 1986.
[2]S. P. Tobin, S. M. Vernon, C. Bajgar, V. E. Haven, L. M. Geoffroy, and D. R. Lillington, “High-efficiency GaAs/Ge monolithic tandem solar cell,” IEEE Electron Device Lett., vol. 9, pp. 256-258, 1988.
[3]H. C. Hamaker, C. W. Ford, J. G. Werthen, G. F. Virshup, N. R. Kaminar, D. L. King, and J. M. Gee , “26% efficient magnesium-doped AlGaAs/GaAs solar concentrator cells,” Appl. Phys. Lett., vol. 47, pp. 762764, 1985.
[4]B. C. Chung, G. F. Virshup, and J. G. Werthen, “High-efficiency one-sun (22.3% at air mass 0; 23.9% at air mass 1.5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 52, pp. 1889-1891, 1988.
[5]J. M. Olson, S. R. Kurtz, and A. E. Kibbler, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell,” Appl. Phys. Lett., vol. 56, pp. 623-625, 1990.
[6]S. K. Dey, W. A. Anderson A. E. Delahoy, and C. Cartier, “Spectral-response and diffusion-length studies of amorphous, polycrystalline, ribbon, epitaxial, and single-crystal silicon MIS solar cells,” J. Appl. Phys., vol. 50, pp. 4425-4430, 1979
[7]P. H. Fang, C. C. Schubert, J. H. Kinnier, and D. Pang, “Submicron polycrystal silicon film solar cells,” Appl. Phys. Lett., vol. 39, pp. 256-257, 1981.
[8]N. Matsuki, Y. Abiko, K. Miazaki, M. Kobayash. H. Fujioka, and H. Koinuma, “Concept and performance of a field-effect amorphous silicon solar cell,” Semicond. Sci. Technol., vol. 19, pp. 61-64, 2004.
[9]A. Rothwarf and A. M. Brnett, “Design analysis of the thin-film CdS-Cu2S solar cell,” IEEE Trans. Electron Devices, vol. 24, pp. 381-387, 1977.
[10]C. M. Ruiz, O. Vigil, E. Saucedo, G.. Contreras-Puente, and V. Bermudez, “Bi doped CdTe: increasing potentialities of CdTe based solar cells,” J. Phys.: Condens., vol. 18, pp. 7163-7169, 2006.
[11]G. S. Kamath, J. Ewan, and R. C. Knechtli, “Large-area high-efficiency (AlGa)As-GaAs solar cells,” IEEE Trans. Electron Devices, vol. 24, pp. 473-475, 1977.
[12]R. C. Knechtli, R. Y. Loo, and G. S. Kamath, “High-efficiency GaAs solar cells,” IEEE Trans. Electron Devices, vol. 31, pp. 577-588, 1984.
[13]G. Augustine, A. Rohatgi, and N. M. Jokerst, “Base doping optimization for radiation-hard SI, GaAs, and InP solar cells,” IEEE Trans. Electron Devices, vol. 39, pp. 2395-2400, 1992.
[14]C. Algora, H. Garcia, J. C. Maroto, G. L. Araujo, and A. Marti, “Charaterization and optimization of graded AlGaAs window layers for high efficiency GaAs solar cells,” in Proc. 12th Eur. Phot. Solar Energy Conf. , pp. 1417-1420, 1994.
[15]C. A. D. Valle and M. F. Alcaraz, “Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells,” IEEE Trans. Electron Devices, vol. 44, pp. 1499-1506, 1997.
[16]S. M. Ramey and R. Khoie, “Modeling of multiple-quantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells,” IEEE Trans. Electron Devices, vol. 50, pp. 1179-1187, 2003.
[17]P. K. Chiang, C. L. Chu, Y. C. M. Yeh, P. Iles, and F. Ho, “Progress toward high-efficiency(>24%) and low-cost multi-junction solar cell production,” Sol. Energy Mater. Sol. Cells, vol. 66, pp. 615-620, 2001.
[18]D. Poelman, P. Clauws, and B. Depuydt, “Chemical surface passivation of low resistivity p-type Ge wafers for solar cell applications,” Sol. Energy Mater. Sol. Cells, vol. 76, pp. 167-173, 2003.
[19]W. Hoagland, “Solar energy,” Sci. Amer., vol. 273, pp. 170-173, 1995.
[20]G. R. Davis, “Energy for planet earth,” Sci. Amer., vol. 263, pp. 21-27, 1990.
[21]K. N. Amulya and J. Goldemberg, “Energy for the developing world,” Sci. Amer., vol. 263, pp. 63-71, 1990.
[22]N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, Li Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R. Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells,” IEEE Trans. Electron Devices, vol. 46, pp. 2116-2125, 1999.
[23]A. Marti and G. L. Araujo, “Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems,” Sol. Energy Mater. Sol. Cells, vol. 43, pp. 203-222, 1996.
[24]A. Yoshida, H. Juso, T. Agui, K. Nakamura, K Sasaki, T. Takamoto, M. Kaneiwa, and K. Okamoto, “Characteristics of Concentrator Triple Junction Cell Optimized for Current Matching,” IEEE Phtovoltaic Energy Conversion, Conf. vol. 1, pp. 757-759, 2006.
[25]M. F. Lamorte and D. H. Abbott, “Computer modeling of a two-junction, monolithic cascade solar cell,” IEEE Trans. Electron Devices, vol. 27, pp. 231-249, 1980.
[26]W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett, vol. 20, pp. 304-306, 1990.
[27]S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sulfur- and InGaP-passivated heterojunction bipolar transistors,” IEEE Junction Technology, pp. 228-231, 2004.
[28]S. M. Sze, Semiconductor Devices: Physics and Technology-2nd ed., John Willey & Sons, Inc., 1985.
[29]Jenny Nelson, “The Physics of Solar Cells,” Imperial College Press, 2003.
[30]Shiv Charan, Makoto Konagai, and Kiyoshi Takahashi, “Series resisttance effects in (GaAl)As/GaAs concentrator solar cells,” J. Appl. Phys., Vol. 50, pp. 963-968, 1979.
[31]M. Zazoui and J. C. Bourgoin, “Space degradation of multijunction solar cells: An electroluminescence study,” Appl. Phys. Lett., vol. 80, pp. 4455-4457, 2002.
[32]C. S. Jiang, D. J. Friedman, J. F. Geisz, H. R. Moutinho, M. J. Romero, and M. M. Al-Jassim, “Distribution of built-in electrical potential in GaInP2/GaAs tandem-junction solar cells,” Appl. Phys. Lett., vol. 83, pp. 1572-1574, 2003.
[33]Aurangzeb Khan, S. Marupaduga, S. S. Anandakrishnan, M. Alam, N. J. Ekins-Daukes, H. S. Lee, T. Sasaki, M. Yamaguchi, T. Takamoto, T. Agui, K. Kamimura, M. Kaneiwa, and M. lmazumi, “Radiation response analysis of wind-gap p-AlInGaP for superhigh-efficiency space photovoltaics,” Appl. Phys. Lett., vol. 85, pp. 5218-5220, 2004.
[34]D. A. Neamen, Semiconductor Physics and Devices – 3rd ed., McGraw-Hill Companies, Inc., 2003.
[35]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar cells,” Science, vol. 285, pp. 692-698, 1999.
[36]J. C. Zolper and A. M. Barnett, “The effect of dislocations on the open-circuit voltage of Gallium Arsenide solar cells,” IEEE Trans. Electron Devices, vol. 37, pp. 478-484, 1990.
[37]M. M. Sanfacon and S. P. Tobin, “Analysis of AlGaAs/GaAs solar cell structures by optical reflectance spectroscopy,” IEEE Trans. Electron Devices, vol. 37, pp. 450-454, 1990.
[38]C. R. Lewis, H. F. Macmillan, B. C. Chung, G. F. Virshup, D. D. Liu, L. D. Partain, and J. G. Werthen, “Recent developments in multijunction solar cell research,” Solar Cells, vol. 24, pp. 171-183, 1988.
[39]Chikara Amano, Hideo Sugiura, Masafumi Yamaguchi and Kunio Hane, “Fabrication and numerical analysis of AlGaAs/GaAs tandem solar cells with tunnel interconnections,” IEEE Trans. Electron Devices, vol. 36, pp. 1026-1035, 1989.
[40]P. D. Demoulin, S. P. Tobin, M. S. Lundstrom, M. S. Carpenter, and M. R. Melloch, “Influence of perimeter recombination on high-efficiency GaAs p/n Heteroface solar cells,” IEEE Trans. Electron Devices, vol. 9, pp. 368-370, 1988.
[41]S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999.
[42]J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Furtz, and B. M. Keyes, “Photocurrent of 1.0eV GaInNAs lattice-matched to GaAs,” J. Cryst. Growth, vol. 95, pp. 401-408, 1998.
[43]A. J. Ptak, S. W. Johnston, S. R. Kurtz, D. J. Friedman, and W. K. Metzger, “A comparison of MBE- and MOCVD-grown GaInNAs,” J. Cryst. Growth, vol. 251, pp. 392-398, 2003.
[44]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells, vol. 85, pp. 429-436, 2005.
[45]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “ Evaluation of InGaP/InGaAs/Ge triple-junction solar cells and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
[46]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 57-67, 2006.
[47]Masafumi Yamaguchi, Tatsuya Takamoto, and Kenji Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3068-3077, 2006.
[48]H. Jianmin, W. Yiyong, X. Jingdong, Y. Dezhuang, and Z. Zhongwei, “Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under <200keV proton irradiation,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1652-1656, 2008.
[49]D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 64, pp. 393-404, 2000.
[50]N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and David R. Lillington, “Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells,” Sol. Energy Mater. Sol. Cells, vol. 66, pp. 453-466, 2001.
[51]S. J. Wojtczuk, S. P. Tobin, C. J. Keavney, C. Bajgar, M. M. Sanfacon, L. M. Geoffroy, T. M. Dixon, S. M. Vernon, J. D. Scofield, D. S. Ruby, “GaAs/Ge tandem-cell space concentrator development,” IEEE Trans. Electron Devices, vol. 37, pp. 455-463, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊