|
[1]R. A. Sintom, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5 percent silicon concentrator solar cells,” IEEE Electron Device Lett., vol. 7, pp. 567-569, 1986. [2]S. P. Tobin, S. M. Vernon, C. Bajgar, V. E. Haven, L. M. Geoffroy, and D. R. Lillington, “High-efficiency GaAs/Ge monolithic tandem solar cell,” IEEE Electron Device Lett., vol. 9, pp. 256-258, 1988. [3]H. C. Hamaker, C. W. Ford, J. G. Werthen, G. F. Virshup, N. R. Kaminar, D. L. King, and J. M. Gee , “26% efficient magnesium-doped AlGaAs/GaAs solar concentrator cells,” Appl. Phys. Lett., vol. 47, pp. 762764, 1985. [4]B. C. Chung, G. F. Virshup, and J. G. Werthen, “High-efficiency one-sun (22.3% at air mass 0; 23.9% at air mass 1.5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 52, pp. 1889-1891, 1988. [5]J. M. Olson, S. R. Kurtz, and A. E. Kibbler, “A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell,” Appl. Phys. Lett., vol. 56, pp. 623-625, 1990. [6]S. K. Dey, W. A. Anderson A. E. Delahoy, and C. Cartier, “Spectral-response and diffusion-length studies of amorphous, polycrystalline, ribbon, epitaxial, and single-crystal silicon MIS solar cells,” J. Appl. Phys., vol. 50, pp. 4425-4430, 1979 [7]P. H. Fang, C. C. Schubert, J. H. Kinnier, and D. Pang, “Submicron polycrystal silicon film solar cells,” Appl. Phys. Lett., vol. 39, pp. 256-257, 1981. [8]N. Matsuki, Y. Abiko, K. Miazaki, M. Kobayash. H. Fujioka, and H. Koinuma, “Concept and performance of a field-effect amorphous silicon solar cell,” Semicond. Sci. Technol., vol. 19, pp. 61-64, 2004. [9]A. Rothwarf and A. M. Brnett, “Design analysis of the thin-film CdS-Cu2S solar cell,” IEEE Trans. Electron Devices, vol. 24, pp. 381-387, 1977. [10]C. M. Ruiz, O. Vigil, E. Saucedo, G.. Contreras-Puente, and V. Bermudez, “Bi doped CdTe: increasing potentialities of CdTe based solar cells,” J. Phys.: Condens., vol. 18, pp. 7163-7169, 2006. [11]G. S. Kamath, J. Ewan, and R. C. Knechtli, “Large-area high-efficiency (AlGa)As-GaAs solar cells,” IEEE Trans. Electron Devices, vol. 24, pp. 473-475, 1977. [12]R. C. Knechtli, R. Y. Loo, and G. S. Kamath, “High-efficiency GaAs solar cells,” IEEE Trans. Electron Devices, vol. 31, pp. 577-588, 1984. [13]G. Augustine, A. Rohatgi, and N. M. Jokerst, “Base doping optimization for radiation-hard SI, GaAs, and InP solar cells,” IEEE Trans. Electron Devices, vol. 39, pp. 2395-2400, 1992. [14]C. Algora, H. Garcia, J. C. Maroto, G. L. Araujo, and A. Marti, “Charaterization and optimization of graded AlGaAs window layers for high efficiency GaAs solar cells,” in Proc. 12th Eur. Phot. Solar Energy Conf. , pp. 1417-1420, 1994. [15]C. A. D. Valle and M. F. Alcaraz, “Performance of antireflecting coating-AlGaAs window layer coupling for terrestrial concentrator GaAs solar cells,” IEEE Trans. Electron Devices, vol. 44, pp. 1499-1506, 1997. [16]S. M. Ramey and R. Khoie, “Modeling of multiple-quantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells,” IEEE Trans. Electron Devices, vol. 50, pp. 1179-1187, 2003. [17]P. K. Chiang, C. L. Chu, Y. C. M. Yeh, P. Iles, and F. Ho, “Progress toward high-efficiency(>24%) and low-cost multi-junction solar cell production,” Sol. Energy Mater. Sol. Cells, vol. 66, pp. 615-620, 2001. [18]D. Poelman, P. Clauws, and B. Depuydt, “Chemical surface passivation of low resistivity p-type Ge wafers for solar cell applications,” Sol. Energy Mater. Sol. Cells, vol. 76, pp. 167-173, 2003. [19]W. Hoagland, “Solar energy,” Sci. Amer., vol. 273, pp. 170-173, 1995. [20]G. R. Davis, “Energy for planet earth,” Sci. Amer., vol. 263, pp. 21-27, 1990. [21]K. N. Amulya and J. Goldemberg, “Energy for the developing world,” Sci. Amer., vol. 263, pp. 63-71, 1990. [22]N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, Li Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R. Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells,” IEEE Trans. Electron Devices, vol. 46, pp. 2116-2125, 1999. [23]A. Marti and G. L. Araujo, “Limiting Efficiencies for Photovoltaic Energy Conversion in Multigap Systems,” Sol. Energy Mater. Sol. Cells, vol. 43, pp. 203-222, 1996. [24]A. Yoshida, H. Juso, T. Agui, K. Nakamura, K Sasaki, T. Takamoto, M. Kaneiwa, and K. Okamoto, “Characteristics of Concentrator Triple Junction Cell Optimized for Current Matching,” IEEE Phtovoltaic Energy Conversion, Conf. vol. 1, pp. 757-759, 2006. [25]M. F. Lamorte and D. H. Abbott, “Computer modeling of a two-junction, monolithic cascade solar cell,” IEEE Trans. Electron Devices, vol. 27, pp. 231-249, 1980. [26]W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett, vol. 20, pp. 304-306, 1990. [27]S. W. Tan, H. R. Chen, W. T. Chen, M. Y. Chu, and W. S. Lour, “Sulfur- and InGaP-passivated heterojunction bipolar transistors,” IEEE Junction Technology, pp. 228-231, 2004. [28]S. M. Sze, Semiconductor Devices: Physics and Technology-2nd ed., John Willey & Sons, Inc., 1985. [29]Jenny Nelson, “The Physics of Solar Cells,” Imperial College Press, 2003. [30]Shiv Charan, Makoto Konagai, and Kiyoshi Takahashi, “Series resisttance effects in (GaAl)As/GaAs concentrator solar cells,” J. Appl. Phys., Vol. 50, pp. 963-968, 1979. [31]M. Zazoui and J. C. Bourgoin, “Space degradation of multijunction solar cells: An electroluminescence study,” Appl. Phys. Lett., vol. 80, pp. 4455-4457, 2002. [32]C. S. Jiang, D. J. Friedman, J. F. Geisz, H. R. Moutinho, M. J. Romero, and M. M. Al-Jassim, “Distribution of built-in electrical potential in GaInP2/GaAs tandem-junction solar cells,” Appl. Phys. Lett., vol. 83, pp. 1572-1574, 2003. [33]Aurangzeb Khan, S. Marupaduga, S. S. Anandakrishnan, M. Alam, N. J. Ekins-Daukes, H. S. Lee, T. Sasaki, M. Yamaguchi, T. Takamoto, T. Agui, K. Kamimura, M. Kaneiwa, and M. lmazumi, “Radiation response analysis of wind-gap p-AlInGaP for superhigh-efficiency space photovoltaics,” Appl. Phys. Lett., vol. 85, pp. 5218-5220, 2004. [34]D. A. Neamen, Semiconductor Physics and Devices – 3rd ed., McGraw-Hill Companies, Inc., 2003. [35]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar cells,” Science, vol. 285, pp. 692-698, 1999. [36]J. C. Zolper and A. M. Barnett, “The effect of dislocations on the open-circuit voltage of Gallium Arsenide solar cells,” IEEE Trans. Electron Devices, vol. 37, pp. 478-484, 1990. [37]M. M. Sanfacon and S. P. Tobin, “Analysis of AlGaAs/GaAs solar cell structures by optical reflectance spectroscopy,” IEEE Trans. Electron Devices, vol. 37, pp. 450-454, 1990. [38]C. R. Lewis, H. F. Macmillan, B. C. Chung, G. F. Virshup, D. D. Liu, L. D. Partain, and J. G. Werthen, “Recent developments in multijunction solar cell research,” Solar Cells, vol. 24, pp. 171-183, 1988. [39]Chikara Amano, Hideo Sugiura, Masafumi Yamaguchi and Kunio Hane, “Fabrication and numerical analysis of AlGaAs/GaAs tandem solar cells with tunnel interconnections,” IEEE Trans. Electron Devices, vol. 36, pp. 1026-1035, 1989. [40]P. D. Demoulin, S. P. Tobin, M. S. Lundstrom, M. S. Carpenter, and M. R. Melloch, “Influence of perimeter recombination on high-efficiency GaAs p/n Heteroface solar cells,” IEEE Trans. Electron Devices, vol. 9, pp. 368-370, 1988. [41]S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999. [42]J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Furtz, and B. M. Keyes, “Photocurrent of 1.0eV GaInNAs lattice-matched to GaAs,” J. Cryst. Growth, vol. 95, pp. 401-408, 1998. [43]A. J. Ptak, S. W. Johnston, S. R. Kurtz, D. J. Friedman, and W. K. Metzger, “A comparison of MBE- and MOCVD-grown GaInNAs,” J. Cryst. Growth, vol. 251, pp. 392-398, 2003. [44]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Evaluation of temperature characteristics of high-efficiency InGaP/InGaAs/Ge triple-junction solar cells under concentration,” Sol. Energy Mater. Sol. Cells, vol. 85, pp. 429-436, 2005. [45]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “ Evaluation of InGaP/InGaAs/Ge triple-junction solar cells and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006. [46]Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 57-67, 2006. [47]Masafumi Yamaguchi, Tatsuya Takamoto, and Kenji Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 3068-3077, 2006. [48]H. Jianmin, W. Yiyong, X. Jingdong, Y. Dezhuang, and Z. Zhongwei, “Degradation behaviors of electrical properties of GaInP/GaAs/Ge solar cells under <200keV proton irradiation,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1652-1656, 2008. [49]D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 64, pp. 393-404, 2000. [50]N. H. Karam, R. R. King, M. Haddad, J. H. Ermer, H. Yoon, H. L. Cotal, R. Sudharsanan, J. W. Eldredge, K. Edmondson, D. E. Joslin, D. D. Krut, M. Takahashi, W. Nishikawa, M. Gillanders, J. Granata, P. Hebert, B. T. Cavicchi, and David R. Lillington, “Recent developments in high-efficiency Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells: steps to next-generation PV cells,” Sol. Energy Mater. Sol. Cells, vol. 66, pp. 453-466, 2001. [51]S. J. Wojtczuk, S. P. Tobin, C. J. Keavney, C. Bajgar, M. M. Sanfacon, L. M. Geoffroy, T. M. Dixon, S. M. Vernon, J. D. Scofield, D. S. Ruby, “GaAs/Ge tandem-cell space concentrator development,” IEEE Trans. Electron Devices, vol. 37, pp. 455-463, 1990.
|