(3.238.96.184) 您好!臺灣時間:2021/05/18 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳建新
研究生(外文):Chien-Shin Chen
論文名稱:遠端電壓訊號型電力系統穩定器設計
論文名稱(外文):Design of Power System Stabilizer Using Remote Voltage Signals
指導教授:黃培華黃培華引用關係
指導教授(外文):Pei-Hwa Huang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:電力系統穩定度相量量測單元電力系統穩定器
外文關鍵詞:Power System StabilityPhasor Measurement UnitPower System Stabilizer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
電力系統低頻振盪現象的原因來自於發電機組與系統負載間機電能量的不平衡。系統發生阻尼不足時,在無事故下皆可能發生自發性低頻振盪現象。輕者影響輸電能力,重者則會導致跳機、跳線,甚至更嚴重的使得系統解聯。因此為了避免上述問題發生,一般在發電機裝設電力系統穩定器加以提供阻尼,進而抑制低頻振盪的發生。
本論文主要的目的在運用電力系統的廣域量測值來設計電力系統穩定器。實例探討以大型電力系統為研究對象,由同步相量量測單元所擷取的遠端匯流排電壓訊號,作為電力系統穩定器的輸入訊號,利用特徵值分析探討不同穩定器架構下的系統動態特性,並以時域響應模擬分析加以驗證。
Power system low-frequency oscillations are caused by the electromechanical energy unbalanced of the generators and system loads. When the system damping is not sufficient, spontaneous low-frequency oscillations will sometimes occur without disturbances, and such oscillations may result in reduction of transmission capability, tripping of lines, tripping of units, even system separation. In order to solve this problem, the utilities generally install the power system stabilizer on the generator for providing additional damping to suppress the low-frequency oscillations.
The main purpose of thesis is to utilize the wide area measurements (remote signals) in the design of power system stabilizer. In this thesis, a large power system is studied, in which remote bus voltage signals are acquired using Phasor Measurement Unit and employed as input signals for the power system stabilizer. The method of eigenvalue analysis is used to investigate the power system dynamic behaviors under different controller structures, and the results are validated with time domain responses.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
符號索引 XI
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究方法 7
1.3 研究工具軟體 9
1.4 分章內容 10
第二章 電力系統穩定度分析理論與方法 11
2.1 電力系統穩定度分類 11
2.2 穩定度之定義 14
2.3 電力系統低頻振盪分析 18
2.4 頻域分析法 19
2.4.1 特徵結構分析法 20
2.4.2 阻尼比 23
2.4.4 特徵結構指定法 25
2.5 時域模擬分析 26
第三章 廣域相量量測與電力系統穩定器 27
3.1 同步相量量測單元介紹 27
3.2 電力系統穩定器 30
3.3 多輸入電力系統穩定器 34
第四章 大型電力系統模擬分析 36
4.1 台灣電力系統架構概述 36
4.2 發電機控制設備 39
4.3 系統模擬分析 41
4.3.1 系統未裝設穩定器 42
4.3.2系統中發電機分別裝設穩定器 49
4.3.3 發電機裝設具備廣域量測值訊號之穩定器 57
4.3.4 發電機裝設具備廣域量測值訊號之穩定器擷取345kV匯
流排電壓訊號 67
第五章 結論 83
5.1 總結…………………………………………………………………..83
5.2 未來研究方向 84
參考文獻 85
[1] P. M. Anderson and A. A. Fouad, Power System Control and Stability, IEEE Press, 1994.
[2] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994.
[3] M. A. Pai, D. P. Sen Gupta, K. R. Padiyar, Small Signal Analysis of Power Systems, Narosa Publishing House, 2004.
[4] G. Rogers, Power System Oscillations, Kluwer Academic, 2000.
[5] C. L. Chang, A. S. Liu, and C. T. Huang, “Oscillatory stability analysis using on-line measured data,” IEEE Trans. on Power Systems, Vol. 3, No.3, pp.823-829, August 1993.
[6] 張忠良,“台電系統低頻振盪現象之研究與改善”,台電工程月刊,第540期, 頁5-8,民國82年8月。
[7] 張忠良、劉阿興、劉傳聖、柯重光、陳永田、黃江滄,台電系統低頻振盪現象之實測與改善,經濟部報告,民國83年6月。
[8] 黃瓊誼、張忠良、陳永田、黃江滄,“電力系統阻尼變遷分析”,第十四屆電力工程研討會論文集, 頁230-236,民國82年12月。
[9] Ministry of Economic Affair, Cause Analysis and Improvement Strategy of the July 29, Dec. 1999.
[10] M. Klein, G. J. Rogers, and P. Kundur, “A fundamental study of inter-area oscillations in power systems,” IEEE Trans. on Power Systems, Vol. 6, No.3, pp.914-921, August 1991.
[11] M. Klein, G. J. Rogers, S. Moorty, and P. Kundur, “Analytical investigation of factors influencing power system stabilizer performance,” IEEE Trans. on Energy Conversion, Vol. 7, No.3, pp.382-388, September 1992.
[12] X. Yang and A. Feliachi, “Stabilization of inter-area oscillation modes through excitation systems,” IEEE Trans. on Power Systems, Vol. 9, No. 1, pp. 494-500, February 1994.
[13] R. E. Wilson, “PMUs,” IEEE Potentials, Vol. 13, No. 2, pp. 26-28, April 1994.
[14] K. E. Martin, G. Benmouyal, M. G. Adamiak, M. Begovic, R. O. Burnett, Jr., K. R. Carr, A. Cobb, J. A. Kusters, S. H. Horowitz, G. R. Jensen, G. L. Michel, R. J. Murphy, A. G. Phadke, M. S. Sachdev, J. S. Thorp, “IEEE Standard for synchrophasors for power systems,” IEEE Trans. on Power Delivery, Vol. 13, No. 1, pp. 73-77, January 1998.
[15] R. E. Wilson, “PMUs,” IEEE Potentials, Vol. 13, No. 2, pp. 26-28, April 1994.
[16] K. E. Martin, G. Benmouyal, M. G. Adamiak, M. Begovic, R. O. Burnett, Jr., K. R. Carr, A. Cobb, J. A. Kusters, S. H. Horowitz, G. R. Jensen, G. L. Michel, R. J. Murphy, A. G. Phadke, M. S. Sachdev, J. S. Thorp, “IEEE Standard for synchrophasors for power systems,” IEEE Trans. on Power Delivery, Vol. 13, No. 1, pp. 73-77, January 1998.
[17] G. Phadke, S. H. Horowitz, and J. S. Thorp, “Aspects of power system protection in the post-restructuring era,” in Proc. of the 32nd Annual Hawaii International Conference on System Sciences, 1999.
[18] C. C. Liu, J. Jung, G. T. Heydt, V. Vittal, and A. G. Phadke, “The strategic power infrastructure defense (SPID) system,” IEEE Control Systems Magazine, Vol. 20, pp. 40-52, August 2000.
[19] C. W. Taylor, “The future in on-line security assessment and wide-area stability control,” in Proc. of the 2000 Power Engineering Society Winter Meeting, Vol. 1, pp. 78-83, 2000.
[20] D. G. Hart, et al., “Real-time wide area measurements for adaptive protection and control,” Paper presented at NSF/DOE/EPRI Sponsored Workshop on Future Research Direction for Complex Interactive Electric Networks, 2000.
[21] G. T. Heydt, C. C. Liu, A. G. Phadke, and V. Vittal, “Solution for the crisis in electric power supply,” IEEE Computer Applications in Power, Vol. 14, No. 3, pp. 22-30, July 2001.
[22] A. G. Phadke, “Synchronized phasor measurements-a historical overview,” in Proc. of 2002 IEEE/PES Asia Pacific Transmission and Distribution Conference and Exhibition, Vol. 1, pp. 476-479, Oct. 2002.
[23] S. H. Horowitz and A. G. Phadke, “Boosting immunity to blackouts,” IEEE Power and Energy Magazine, Vol. 1, No. 5, pp. 47-53, Sep-Oct 2003.
[24] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, “Definition and classification of power system stability,” IEEE Trans. on Power Systems, Vol. 19, NO. 2, pp. 1387-1401, MAY 2004.
[25] Technical Studies Subcommittee of Reactive Power Reserve Work Group (RRWG), “Guide to WECC/NERC planning standards I. D: voltage support and reactive power, ”Western Electricity Coordinating Council, March 2006.
[26] M. J. Basler and R. C. Schaefer, “Understanding Power System Stability,” in Proc. of Pulp and Paper Industry Technical Conference, 2007, pp. 37-47, June 2007.
[27] 黃培華,利用特徵結構之動態穩定度研究,台灣大學電機工程學研究所博士論文,民國78年6月。
[28] 黃培華,“應用於電力系統小信號穩定度分析之關鍵特徵值計算法”,電機月刊,第4期, 頁282-289,民國91年4月。
[29] A. F. Snyder, D. Ivanescu, N. HadjSaid, D. Georges, and T. Margotin, “Delayed-input wide-area stability control with synchronized phasor measurements and linear matrix inequalities,” in Proc. of 2000 IEEE PES Summer Meeting, Vol. 2, pp 1009-1014, 2000.
[30] I. Kamwa, L. Gerin-Lajoie, and G. Trudel, “Multi-loop power system stabilizers using wide-area synchronous phasor measurements,” in Proc. of 1998 American Control Conference, Vol. 5, pp 2963-2967, 1998.
[31] I. Kamwa, R. Grondin, and Y. Hebert, “Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach” IEEE Trans. on Power Systems, Vol. 16, pp. 136-153, 2001.
[32] J. H. Chow, J. J. Sanchez-Gasca, H. Ren, and S. Wang, “Power system damping controller design using multiple input signals,” IEEE Control Systems Magazine, Vol. 20, No. 4, pp. 82-90, August 2000.
[33] H. Wu, K. S. Tsakalis, and G. T. Heydt, “Evaluation of time delay effects to wide-area power system stabilizer design,” IEEE Trans. on Power Systems, Vol. 19, No. 4, pp. 1935-1941, Nov. 2004.
[34] X. Xie, Y. Xin, J. Xiao, J. Wu, and Y. Han, “WAMS applications in Chinese power systems,” IEEE Power & Energy Systems, pp. 54-63, Jan./Feb. 2006.
[35] M. G. Adamiak, A. P. Apostolov, M. M. Begovic, C. F. Henville, K. E. Martin, G. L. Michel, A. G. Phadke, and J. S. Thorp, “Wide area protection-Technology and infrastructures,” IEEE Trans. on Power Delivery, Vol. 21, No. 2, pp. 601-609, April 2006.
[36] N. Kakimoto, M. Sugumi, T. Makino, and K. Tomiyama, “Monitoring of interarea oscillation mode by synchronized phasor measurement,” IEEE Trans. on Power Systems, Vol. 21, No. 1, pp. 260-268, Feb. 2006.
[37] K. E. Holbert, G. T. Heydt, and H. Ni, “Use of satellite technologies for power system measurements, command, and control,” Proc. of the IEEE, Vol. 93, No. 5, pp. 947-955, May 2005.
[38] J. Rasmussen and P. Jorgensen, “Synchronized phasor measurements of a power system event in Eastern Denmark,” in Proc. of 2003 IEEE Power Tech Conference, Vol. 3, pp.123-127, 2003.
[39] H. Ni, G. T. Heydt, and L. Mili, “Power system stability agents using robust wide area control,” IEEE Trans. on Power Systems, Vol. 17, No. 4, pp. 1123-1131, 2002.
[40] X. Y. TAO, Z. H. LIU, and H. G. ZHAO,“Study on the Feasibility of Wide Usage of PSS in Multi-Machine Power System,”in Proc. of Power System Technology, Vol. 32, No. 22, pp 30-34, Nov. 2008.
[41] Rogers, G. J. , “The application of power system stabilizers to a multigenerator plant,” IEEE Trans. on Power Systems, Vol. 15, No. 1, pp. 350-355, Feb. 2000.
[42] IEEE Power Engineering Society, IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Std 421.5-2005, 2006.
[43] I. Kamwa, R. Grondin, G. Trudel, “IEEE PSS2B versus PSS4B: the limits of performance of modern power system stabilizers,” IEEE Trans. on Power Systems, Vol. 20, No. 2, pp. 903-915, May 2005.
[44] 曾大修,利用遠端訊號回授之多輸入電力系統穩定器,台灣海洋大學電機工程學系碩士論文,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top