(34.237.52.11) 您好!臺灣時間:2021/05/18 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王秋菊
論文名稱:夏季長江沖淡水域擴展範圍對東海微細鞭毛蟲族群空間分佈之影響
論文名稱(外文):The impact of Changjiang River plume on the spatial variations of nanoflagellates in the East China Sea in summer
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Kuo-Ping Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:42
中文關鍵詞:微細鞭毛蟲東海
相關次數:
  • 被引用被引用:1
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
微細鞭毛蟲是控制細菌及pico級之植物性浮游生物數量之重要角色,了解其空間變化可推測微細鞭毛蟲在各生態系中能量傳遞上的重要性。長江沖淡水是東海主要陸源性營養鹽與有機物的最主要來源,因此其注入量會對東海陸棚生態系產生關鍵性之影響。為了解微細鞭毛蟲與長江沖淡水範圍變化的關係,本研究於2006年6月及2007年7月各利用海研Ⅱ號OR2-1360及海研Ⅰ號OR1-836兩個航次進行東海大範圍採樣,並同時利用許(2005)所論述之2003年夏季兩個航次資料進行分析。由結果可知,異營性鞭毛蟲受長江沖淡水影響有限。但長江沖淡水帶入之營養鹽會刺激自營性鞭毛蟲(<3 μm)成長,所以在長江沖淡水範圍較大時期,營養鹽會使行光合作用為主之色素型鞭毛蟲大量生長,成為優勢群集,但長江沖淡水範圍縮小時期,這群自營性鞭毛蟲會衰退,因此數量減少。因此可知東海陸棚海域微細鞭毛蟲群集數量之變化主要受到<3 μm自營性鞭毛蟲消長的掌控。當長江沖淡水範圍較大時,由於含有豐富的營養鹽致而使行自營性生活的微細鞭毛蟲大量生長,因此其空間分布會與鹽度呈負相關,而當長江沖淡水範圍縮小時,自營性鞭毛蟲受富營養鹽的大陸沿岸水與黃海水影響,因此空間分布與溫度呈負相關。
目錄
摘要 ……………………………………………………… Ⅰ
目錄 ……………………………………………………… Ⅱ
表目錄 ……………………………………………………… Ⅲ
圖目錄 ……………………………………………………… Ⅳ
前言 ……………………………………………………… 1
材料與方法 ……………………………………………………… 4
結果 ……………………………………………………… 7
討論 ……………………………………………………… 10
引用文獻 ……………………………………………………… 20
附表 ……………………………………………………… 27
附圖 ……………………………………………………… 30
引用文獻
Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil and F.
Thingstand (1983) The ecological role of water-column microbes in
the sea. Mar. Ecol. Prog. Ser. 10: 257-263.

Calbet, A., M. R. Landry and S. Nunnery (2001) Bacteria-flagellate
interactions in the microbial food web of the oligotriphic subtropical
North Pacific. Aquat. Microb. Ecol. 23: 283-292.

Carrick, H. J. and G. L. Fahnenstiel (1989) Biomass, size structure, and
composition of phototrophic and heterotrophic nanoflagellate
communities of Lake Huron and Michigan. Can. J. Fish. Aquat. Sci.
46: 1922-1928.

Chang, F. H., W. Vincent and P. Woods (1992) Nitrogen utilization by
size-fractionated phytoplankton assemblages assdciates with an
upwelling event off Westland, New Zealand. N. Z. J. Mar. Freshwater
Res. 26: 287-301.

Chen, J., D. Li and B. Chen (1999) The processes of dynamic
sedimentation in the Changjiang Estuary. J. Sea Res. 41: 129–140.

Chen, C.-T. A. (2000) The Three Gorges Dam: Reducing the Upwelling
and thus Productivity in the East China Sea. Geophys. Res. Lett.
27(3): 381–383.

Christaki, U., F. Van Wambeke and J. R. Dolan (1999) Nanoflagellates
(mixotrophs,heterotrophs and autotrophs)in the oligotrophic eastern
Mediterranean:standing stocks, bacterivory and relation-ship with
bacteria production. Mar. Ecol. Prog. Ser. 181: 297-307.

Christaki, U., A. Giannakourou, F. Van Wambeke and G. Gregori (2001)
Nanoflagellate predation on auto- and heterotrophic picoplankton in
the oligotrophic Mediterranean Sea. J. Plankton Res. 23(11):
1297-1310.

Gasol, J. M. (1994) A framework for the assessment of top-down vs
bottom-up control of heterotrophic nanoflagellate abundance. Mar.
Ecol. Prog. Ser. 113: 291-300.

Gong, G. C., Y. L. Chen and K. K. Liu (1996) Summertime hydrography
and chlorophyll a distribution in the East China Sea in summer:
Implications of nutrient dynamics. Cont. Shelf Res. 16: 1561-1590.

Gong, G. C., Y. H. Wen, B.W. Wang and G. J. Liu (2003) Seasonal
variation of chlorophyll a concentration, primary production and
environmental conditions in the subtropical East China Sea. Deep-Sea
Res.II . 50: 1219-1236.
Granda, A. P. and R. A. A’lvarez (2008) The annual cycle of
nanoflagellates in the Central Cantabrian Sea(Bay of Biscay).
J. Mar. Systems. 72: 298-308.

Hall, J. A., D. P. Barrett and M. R. James (1993) The important of
phytoflagellates, heterotrophic flagellates and ciliate grazing on
bacteria and picophytoplankton sized prey in a coastal marine
environment. J. Plankton Res. 15: 1075-1086.

Huang, B., W. Lan, Z. Cao, M. Dai, L. Huang, N. Jiao and H. Hong
(2008) Spatial and temporal distribution of nanoflagellates in the
northern South China Sea. Hydrobiologia. 605: 143-157.

Hur, H. B., G. A. Jacobs and W. J. Teague (1999) Monthly variation of
water masses in the Yellow and East China Seas, November 6, 1998.
J. Oce. 55: 171-184.

Hwang, S. J. and R. T. Heath (1997) The distribution of protozoa across
a trophic gradient, factors controlling their abundance and importance
in the plankton food web. J. Plankton Res. 19(4): 491-518.

James, M. R., J. A . Hall and D. P. Barrett (1995) Grazing by protozoa
in marine coastal and oceanic ecosystems off New Zealand. N. Z. J.
Mar. Freshwater Res. 30: 313-324.

Lee, W. L. and D. J. Patterson (2002) Abundance and biomass of
heterotrophic flagellates, and factors controlling their abundance and
distribution in sediments of Botany Bay. Microb. Ecol. 43:467-481.

Li, J., J. Ren, J. Zhang and S. Liu (2008) The Distribution of Dissolved
Aluminum in the Yellow and East China Seas. J. Ocean Univ. Chin. 7
(1): 48-54.

Mackiewize, T. (1991) Composition and seasonal changes of
nanoflagellates in the Gdansk Basin(southern Baltic). Acta
Ichthyologica Et Piscatoria. 21: 125-134.

Nielson, T. G. and K. Richardson (1989) Food chain structure of the
North Sea plankton communities: seasonal variations of the role of the
microbial loop. Mar. Ecol. Prog. Ser. 56: 75-87.

Nygaard, K., K. Y. BorsheimT and T. F. hingstad (1993) Grazing rates
on bacteria by marine heterotrophic microflagellates compared to
uptake rates of bacterial-sized monodisperes fluorescent latex beads.
Mar. Ecol. Prog. Ser. 44: 159-165.

Pan, K., L. F. Huang, F. Guo and B. Q. Huang (2005) The quantitative
relationship between flagellates and suspended particles in Huanghai
Sea and East Sea in summer. Acta Oceanological sinica . 27: 107-115.

Pan, L. A., J. Zhang and L. H. Zhang (2007) Picophytoplankton,
nanophytoplankton, heterotrophic bacteria and viruses in the
Changjiang Estuary and adjacent coastal waters. J. Plankton Res. 29
(2): 187-197.

Porter, K. G. and Y. S. Feig (1980) The use of DAPI for identifying and
counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.

Riemann, B., H. Havskum, F. Thingstad and C. Bernard (1995) The role
of mixotrophy in pelagic environments, 38:87-114. In: Joint I〔ed.〕
, Molecular ecology of aquatic microbes.

Safi, k. A. and J. A. Hall (1997) Factors influencing autotrophic and
heterotrophic nanoflagellates abundance in five water masses
surrounding New Zealand. N. Z. J. Mar. Freshwater Res. 31: 51-60.

Sander, R. W., D. A. Caron and V. G. Berninger (1992) Relationships
between bacteria and heterotrophic nanoplankton in marine and
freshwaters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser.
86: 1-14.

Sanders, R. and S. Wickham (1993) Planktonic protozoa and metazoan:
predation, predation food quality and population control. Mar. Microb.
Food Webs. 7: 197-223.

Shiah, F. K., G. C. Gong and X. Tian (2006) Effects of ChangJiang River
summer discharge on bottom-up control of coastal bacteria growth.
Aquat. Microb. Ecol. 44: 105-113.

Tamigneaux, E., E. Vazquez, M. Mingelbeir, B. Klein and L. Legebdre
(1995) Environmental control of phytoplankton assemblages in
nearshore marine waters, with special emphasis on phototrophic
ultraplankton. J. Plankton Res. 17: 1421-1447.

Thingstad, T. F., H. Havskum, K. Garde and B. Riemaan (1996) On the
strategy of ’eating your competitor’. A mathematical analysis of
mixotrophy. Ecology. 77: 39-49.

Tong, S. M. (1997) Heterotrophic flagellates from the water column in
shark Bay, Western Australia. Mar. Biol. 128: 517-536.

Unrein F., R. Massana, L. Alonso-Sa’ez and J. M. Gasol (2007)
Significant year-round effect of small mixotrophic flagellates on
bacterioplankton in an oligotrophic coastal system. Limnol Oceanogr.
52(1): 456-469.

Vaque, D., J. M. Gasol and C. Marrase (1994) Grazing rates on
bacteria:the significance of methodology and ecological factors. Mar.
Ecol. Prog. Ser. 109: 263-274.

Verity, P. G., P. Wassmann, T. N. Ratkova, I. J. Andreassen and E. Nordby
(1999) Seasonal pattern in composition and biomass of autotrophic
and heterotrophic nano- and microplankton communities on the north
Norwegian shelf. Sarsia. 84: 265-277.

許婷婷 (2005) 長江淡水流入量之改變對東海微生物環生態系之響
-細菌、藍綠細菌及鞭毛蟲數量變化.國立台灣海洋大學環境生物與
漁業科學研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊