(3.238.173.209) 您好!臺灣時間:2021/05/16 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳聖琁
論文名稱:台灣東北沿岸細菌成長率之季節性變化:透析膜與PC培養瓶之比較
論文名稱(外文):Seasonal variation of bacteria growth rates in coastal water of northeast Taiwan: The comparison with dialysis bag and polycarbonate bottle
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Kuo-Ping Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:43
中文關鍵詞:細菌成長率透析膜
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
微生物生態學研究者,長期以來用培養瓶 (polycarbonate bottles)來研究細菌的成長變化。然而此種培養方式與現場環境最大的不同,在於培養瓶於培養過程中與外界隔離,可能會造成細菌成長速率有錯估之情形發生。本實驗依此利用透析膜於現場進行培養,以期了解實驗室及現場在不同裝置下所形成的差異。本實驗於2008年3月至10月間在台灣東北沿岸海域進行採水及培養。經研究結果發現,水樣經2 μm 過濾培養6h後,培養瓶細菌的季節成長率變動範圍在0.041 ~ 0.274 h-1之間,然而於透析膜的結果顯示其細菌成長率在0.016 ~ 0.182 h-1之間變動,經統計檢定發現兩者間有明顯的差異存在 (pair t-test, p<0.05)。另外此兩裝置之細菌成長率回歸關係為dialysis bags=0.64 bottles-0.027,在此表示培養瓶中的細菌成長率約高估1.5倍。而本實驗進一步發現,若將本研究PC培養瓶及透析膜所量測之細菌成長率之季節變動與全世界所收集之資料相比較。本研究在透析膜所量測之細菌成長率會與世界上所收集之資料較為符合。然而就PC培養瓶所呈現之細菌成長率,很清楚看出在溫度低於25℃之範圍,其成長率與溫度變動趨勢和世界上所收集之資料範圍相近。但在溫度高於25℃之暖季期間,使用PC培養瓶所量測之細菌成長率(0.15 ~ 0.3 h-1)遠遠高於世界上各水域所觀測的值(<0.15 h-1)。而在藍綠細菌生產力的量測上,更清楚的發現在利用PC培養瓶所量測的藍綠細菌生產力(0 ~ 1.1 μg C L-1 h-1)會明顯高於透析膜中所量測到的藍綠細菌生產力(-0.1 ~ 0.2 μg C L-1 h-1)(p<0.05)。本研究推測由於在PC培養瓶中有較高的藍綠細菌成長量,而藍綠細菌會釋放較多有機物質,使得在PC培養瓶有較高的細菌成長率出現。
中文摘要 …………………………………………………… I
英文摘要 …………………………………………………… III
圖目錄 …………………………………………………… VI
表目錄 …………………………………………………… VIII
前言 …………………………………………………… 1
材料與方法 …………………………………………………… 6
結果 …………………………………………………… 10
討論 …………………………………………………… 13
參考文獻 …………………………………………………… 19
附圖 …………………………………………………… 31
附表 …………………………………………………… 42
Anderson, M. R. and R. B. Rivkin (2001) Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat. Microb. Ecol. 25: 195-206.

Arfi, R. and M. Bouvy (1995) Size composition and distribution of particles related to wind induced resuspension in a shallow tropical lagoon. J. Plankton Res. 17: 557-574.

Azam, F. and R. E. Hodson (1977) Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267: 696-697.

Bell, R. T., G. M. Ahlgren and I. Ahlgren (1983) Estimating bacterioplankton production by measuring [3H]thymidine incorporation in a Eutrophic Swedish Lake. Appl. Environ. Microbiol. 45: 1709-1721.

Berglund, J., K. Samuelsson, T. Kull, U. Muren and A. Andersson (2005) Relative strength of resource and predation limitation of heterotrophic nanoflagellates in a low-productive sea area. J. Plankton. Res. 27: 923-935.

Bjornsen, P. K. (1988) Grazing on bacterioplankton by heterotrophic flagellates: a test of methods. Ergebn. Limnol. 31: 267-274.

Borsheim, K. Y. (2000) Bacterial production rates and concentrations of organic carbon at the end of the growing season in the Greenland Sea. Aquat. Microb. Ecol. 21: 115-123.

Borsheim, K. Y. and G. Bratbak (1987) Cell volume to carbon conversion factors for a bacterivorous Monas sp. Enrichment from seawater. Mar. Ecol. Prog. Ser. 8: 211-223.

Carlson, C. A., H. W. Ducklow and T. D. Sleeter (1996) Stocks and dynamics of bacterioplankton in the northwestern Sargasso Sea. Deep-Sea Res. II 43: 491-515.

Caron, D. A., E. R. Peele, E. L. Lim and M. R. Dennett (1999) Picoplankton and nanoplankton and their trophic coupling in the surface waters of the Sargasso Sea south of Bermuda. Limnol. Oceanogr. 44: 259-272.

Chase, Z. and N. M. Price (1997) Metabolic consequences of iron deficiency in heterotrophic marine protozoa. Limnol. Oceanogr. 42: 1673-1684.

Cho, B. and F. Azam (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser. 63: 253-259.

Chrost R. H. and M. A. Faust (1983) Organic carbon release by phytoplankton: its composition and utilization by bacterioplankton. J. Plankton Res. 5: 477-493

Church, M. J., D. A. Hutchins and H. W. Ducklow (2000) Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66: 455-466.

Cleven, E. J. and T. Weisse (2001) Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat. Microb. Ecol. 23: 147-161.

Cole, J. J., S. Findlay and M. L. Pace (1988) Bacterial production in fresh and saltwater ecosystem: A crosssystem overview. Mar. Ecol. Prog. Ser. 43: 1-10.

Dolan, J. R. (1999) Diel periodicity in Synechococcus spp. Population and grazing by heterotrophic nanoflagellates: Analysis of food vacuole contents. Limnol. Oceanogr. 44: 1565-1570.

Ducklow, H. W. and C. A. Carlson (1992) Oceanic bacterial production. Adv. Microb. Ecol. 12: 113-181.

Estep, K. W., P. G. Davis, M. D. Keller and J. M. Sicburth (1986) How important are algal nanoflagellate in bacterivory? Limnol. Oceanogr. 31: 350-646.

Fenchel, T. M. (1984) Suspended bacteria as a food source, In Flows of energy and materials in marine ecosystems, ed. M. J. R. Fasham, Plenum Press, New york, pp. 301-305.

Fenchel, T. and P. R. Jonsson (1988) The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Mar. Ecol. Prog. Ser. 48: 1-15.

Ferrier-Pages, C. and J. P. Gattuso (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb. Ecol. 35:46-57.

Fuchs, B. M., M. V. Zubkov, K. Sahm, P. H. Burkill, and R. Amann (2000) Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ. Microbiol. 2: 191-201.

Fuhrman, J. A. and F. Azam (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085-1095.

Fuhrman, J. A. and F. Azam (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109-120.

Gasol, J. M. and X. A. G. Moran (1999) Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry. Aquat. Microb. Ecol. 16: 251-264.

Gurung, T. K., M. Nakanishi and J. Urabe (2000) Seasonal and vertical difference in negative and positive effects of grazers on heterotrophic bacteria in Lake Biwa. Limnol. Oceanogr. 45: 1689-1696.

Hennes, K. P. and M. Simon (1995) Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl. Environ. Microbiol. 61: 333-340.

Herndl, G. J., E. Kaltenbok and G. Muller-Niklas (1993) Dialysis bag incubation as a non radiolabelling technique to estimate bacterioplankton production in situ. Handbook of Methods in Aquatic Microbial Ecology pp. 495-503. Lewis publisher, Boca Raton, FL.

Jugnia, L. B., T. Sime-Ngando and D. Gilbert (2006) Dynamics and estimates of growth and loss rates of bacterioplankton in a temperate freshwater system. FEMS Micro. Ecol. 58: 23-32.

Kana, T. M. and P. M. Glibert (1987) Effect of irradiances up to 2000 μE m–2 s–1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep-Sea Res. 34: 479–495

Landry, M. R., J. Kirshtein and J. Constantinou (1995) A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental test in the central equatorial Pacific. Mar. Ecol. Prog. Ser. 120: 53-63.

Lee, C. W., I. Kudo, M. Yanada and Y. Maita (2001) Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean). Aquat. Microb. Ecol. 23: 263-271.

Legendre, P. and M. Troussellier (1988) Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055-1067.

Malone, T. C., H. W. Ducklow, E. R. Peele and S. E. Pike (1991) Picoplankton carbon flux in Chesapeake Bay. Mar. Ecol. Prog. Ser. 78: 11-22.

McManus, G. B., P. M. Griffin and J. R. Pennock (2004) Bacterioplankton abundance and growth in a river-dominated estuary: relationships with temperature and resources. Aquat. Microb. Ecol.37: 23-32.

Metzler, P. M., P. M. Glibert, S. A. Gaeta and J. M. Ludlam (2000) Contrasting effects of substrate and grazer manipulations on picoplankton in oceanic and coastal waters off Brazil. J. Plankton Res. 22: 77-90.

Nishimura, Y., C. Kim and T. Nagata (2005) Vertical and seasonal variations of bacterioplankton subgroups with different nucleic acid contents: possible regulation by phosphorus. Appl. Environ. Microbiol. 71: 5828-5836.

Paranjape, M. A. and K. Gold (1982) Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris. 58: 143-150.

Pomeroy, L. R. and W. J. Wiebe (1988) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23: 187-204.

Proctor, L. M. and J. A. Fuhrman (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62.

Putland, J. N. (2000) Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. J. Plankton Res.22: 253-277.

Revilla, M., A. Iriarte, I. Madariaga and E. Orive (2000) Bacterial and phytoplankton dynamics along a trophic gradient in a shallow temperature estuary. Estuar., Coast. Shelf. Sci. 50: 297-313.

Rivkin, R. B., M. R. Anderson and C. Lajzerowicz (1996) Microbial processes in cold oceans. I. Relationship between temperature and bacterial growth rate. Aquat. Microb. Ecol. 10: 243-254.

Rivkin, R. B., J. N. Putland, M. R. Anderson and D. Deibel (1999) Microzooplankton bacterivory and herbivory in the NE subarctic Pacific. Deep-Sea Res. II 46: 2579-2618.

Samuelsson, K. and A. Andersson (2003) Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquat. Microb. Ecol. 30: 239-250.

Scharek, R. and M. Latasa (2007) Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep chlorophyll maximum layers in the NW Mediterranean Sea. Aquat. Microb. Ecol. 46: 153-161.

Schultz, J. R., E. D. White III and H. W. Ducklow (2003) Bacterioplankton dynamics in the York River estuary: primary influence of temperature and freshwater inputs. Aquat. Microb. Ecol. 30: 135-148.

Sherr, B. F., E. B. Sherr and C. S. Hopkinson (1988) Trophic interactions within pelagic microbial communities: Indications of feedback regulation of carbon flow. Hydrobiol. 159: 19-26.

Sherr, E. B., B. F. Sherr and J. McDaniel (1991) Clearance rates of <6 μm fluorescently labeled alage (FLA) by estuarine protozoa : potential impact of flagellates and ciliates. Mar. Ecol. Prog. Ser. 69: 81-92.

Shiah, F. K. and H. W. Ducklow (1994) Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol. Oceanogr. 39: 1243-1258.

Shiah, F. K. and H. W. Ducklow (1995) Multi-scale variability in bacterioplankton abundance, production and specific growth rate in a temperate salt marsh tidal creek. Limnol. Oceanogr. 40: 55-66.

Shiah, F. K., K. K. Liu and G. C. Gong (1999) Temperature versus substrate limitation of heterotrophic bacterioplankton production across trophic and temperature gradients in the East China Sea. Aquat. Microb. Ecol. 17: 247-254.

Shiah, F. K., G. C. Gong and C. C. Chen (2003) Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep-Sea Res. II 50: 1295-1390.

?imek, K., M. Macek and V. Vyhnalek (1990) Uptake of bacteria-sized fluorescent pacticles by natural protozoan assemblage in a reservoir. Ergebn. Limnol. 34: 275-281.

Simon, M., F. O. Glockner and R. Amann (1999) Different community structure and temperature optima of heterotrophic picoplankton in various region of the Southern Ocean. Aquat. Microb. Ecol. 18: 275-284.

Smith, R. and J. Hall (1997) Bacterial abundance and production in different water masses around South Island, New Zealand. N. Z. j. mar. freshwater res. 31: 515-524.

Smits, J. D. and B. Riemann (1988) Calculation of cell production from 3H-thymidine incorporation with freshwater bacteria. Appl. Environ. Microbiol. 54: 2213-2219.

Staroscik, A. M. and D. C. Smith (2004) Seasonal patterns in bacterioplankton abundance and production in Narragansett Bay, Rhode Island, USA. Aquat. Microb. Ecol. 35: 275-282.

Tanaka, T. and F. Rassoulzadegan (2004) Vertical and seasonal variations of bacterial abundance and production in the mesopelagic layer of the NW Mediterranean Sea: bottom-up and top-down controls. Deep-Sea Res. I 51: 531-544.

Tsai, A. Y., K. P. Chiang, J. Chang and G. C. Gong (2005) Seaaonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50: 1221-1231.

Tsai, A. Y., K. P. Chiang, J. Chang and G. C. Gong (2008) Seasonal variations in trophic dynamics of nanoflagellates and picoplankton in coastal waters of the western subtropical Pacific Ocean. Aquat. Microb. Ecol. 51: 263-274.

Vaque, D., J. I. Calderon-Paz, N. Guixa- Boixereu and C. Pedros-Alio (2002) Spatial distribution of microbial biomass and activity (bacterivory and bacterial production) in the northern Weddell Sea during the austral summer (January 1994). Aquat. Microb. Ecol. 29: 107-121.

Vazquez-Dominguez, E., J. M. Gasol, S. Agusti, C. M. Duarte and D. Vaque (2005) Growth and grazing losses of prokaryotes in the central Atlantic Ocean. J. Plankton Res. 27: 1055-1066.

Velimirov, B. and M. Walenta-Simon (1992) Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar. Ecol. Prog. Ser. 80: 237-248.

Weisse, T. and U. Scheffel-Moser (1991) Uncoupling the microbial loop: growth and grazing loss rates of bacteria and heterotrophic nanoflagellates in the North Atlantic. Mar. Ecol. Prog. Ser. 71: 195-205.

White, P. A., J. Kalff, J. B. Rasmussen and J. M. Gasol (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21: 99-118.

Wieltschnig, C., P. Wihlidal, T. Ulbricht, A. K. T. Kirschner and B. Velimirov (1999) Low control of bacterial production by heterotrophic nanoflagellates in a eutrophic backwater environment. Aquat. Microb. Ecol. 17: 77-89.

Wikner, J. and A. Hagstrom (1988) Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacterivores in the marine environment. Mar. Ecol. Prog. Ser. 50: 137-145.

Wright, R. T. and R. B. Coffin (1984) Measuring microzooplankton grazing on planktonic marine bacteria by its impact on bacterial production. Aquat Microb. Ecol. 10: 137-149.

Zubkov, M. V., M. A. Sleigh, P. H. Burkill and R. J. G. Leakey (2000) Bacterial growth and grazing loss in contrasting areas of North and South Atlantic. J. Plankton Res. 22: 685-711.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top