跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭鴻暉
研究生(外文):Hung-Hui Cheng
論文名稱:改善低溫流動特性的生質柴油製程探討
論文名稱(外文):Investigation on Production Procedures for Improving Low-Temperature Fluidity Characteristics of Biodiesel
指導教授:林成原林成原引用關係
指導教授(外文):Cherng-Yuan Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:生質柴油低溫流動特性觸媒裂解脫氫
外文關鍵詞:Biodieselcold filter plugging pointcatalyst crackingdehydrogenation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生質柴油為具有潛力之替代燃料,有較佳之特性,如較高的閃火點、較佳之潤滑性及較高含氧成份…等,而被視為潔淨能源。冷濾點為生質柴油低溫流動特性的指標,生質柴油擁有比石化燃料較長的脂肪酸碳鏈,其冷濾點溫度相對比石化柴油高。本論文擬探討加熱裂解脫氫反應,與熱裂解製程技術在添加觸媒MCM-41(SiO2)與Fe3O4(SiO2),對於棕櫚生質柴油低溫流動特性的影響。熱裂解溫度範圍400℃~600℃之間,原料油的進料流速為0.84 g/min,以氮氣作為載流氣體。實驗結果顯示熱裂解溫度為400℃時可得到最大液體收集率99.3%,添加觸媒Fe3O4(SiO2) 在600℃熱裂解時,降低冷濾點最大達12℃。無添加觸媒時的裂解油產物有最高的水分及酸價,添加觸媒MCM-41(SiO2)與Fe3O4(SiO2) 時具有較高碘價及較低黏度、比重及冷濾點,同時減少水分形成與減緩酸價上升,尤其當裂解溫度達600℃且使用觸媒Fe3O4(SiO2)時所得之油品冷濾點溫度為2℃,擁有三種裂解油品中最低的比重、冷濾點、黏度及閃火點和最高的碘價。
Biodiesel which bears with superior fuel characteristics including higher flash point, better lubricity, and higher oxygen content have been considered as a promising alternative clean fuel. Cold filter plugging point (CFPP) is the most significant indicator for low-temperature fluidity of biodiesel. The CFPP of biodiesel is generally higher than pertodiesel primarily due to longer carbon-chain structures of fatty acids in the former fuel. The technique of catalyzed cracking and dehydrogenation reaction is used in this experimental study in order to lower the CFPP of biodiesel. The results of fuel properties of the palm-oil biodiesel catalyzed by MCM-41 (SiO2) and Fe3O4 (SiO2) are compared with those of thermally cracking without any catalyst. The temperature of the catalyzed cracking is set in the range between 400 ~ 600 . The feeding rate of the palm-oil biodiesel which is forwarded by nitrogen gas is controlled at 0.84 g/min. The experimental results show that the maximum recovered ratio of 99.3 vol. % was obtained at the catalyzed temperature 400 . The CFPP was decreased to its maximum of 12 when the biodiesel was cracked by the catalyst Fe3O4 (SiO2) at 600 . The maximum water content and acid value were produced when no catalyst was used to crack the biodiesel. The use of either MCM-41 (SiO2) or Fe3O4 (SiO2) catalyst to crack the biodiesel produced higher iodine value, lower kinematic viscosity, specific gravity, and CFPP than those of the biodiesel cracked without catalyst. Moreover, the increases of both water formation and acid value were lessened. In particular, the use of Fe3O4 (SiO2) catalyst at 600 to crack the palm-oil biodiesel produced the lowest CFPP at 2 , specific gravity, kinematic viscosity, flash point while the highest iodine value among all of the cracked biodiesels in this study
誌謝...............................................I
摘要..............................................II
ABSTRACT.........................................III
目錄..............................................IV
表目錄...........................................VII
圖目錄..........................................VIII
第一章 前言…………………………………………..……………..1
1-1 研究背景………………………………………………………..1
1-2 研究動機………………………………………………………..2
1-3 研究目的………………………………………………………..4
第二章 文獻回顧.....................................5
2-1 動植物油脂特性..................................5
2-1-1 動植物油脂的脂肪酸分類.........................5
2-1-2 脂肪酸與油品特性關係式.........................7
2-2 不同生質柴油的混合...............................8
2-2-1 兩種以上生質柴油互混...........................8
2-2-2 傳統柴油與生質柴油互混降低冷濾點................10
2-3 添加添加劑改善低溫流動特性.......................10
2-4 生質柴油之蠟晶體形成與成長.......................11
2-5 生質柴油特性...................................11
2-5-1 生質柴油之濁點與流動點和冷濾點..................11
2-5-2 生質柴油之低溫過濾性(LTFT)...................13
2-6 熱裂解技術.....................................14
2-6-1 使用熱裂解生產生質燃料.........................15
2-6-2 熱裂解技術之操作條件...........................18
2-7 脂肪酸脫氫的觸媒材料.............................19
2-7-1 脫氫反應.....................................19
2-7-2 觸媒催化反應過程..............................20
2-7-3 脫氫觸媒材料MCM-41………………….....……………..20
2-7-4 脫氫觸媒材料MCF...............................21
2-7-5 孔洞觸媒合成方法之單槽合成和酒精浸漬法............21
第三章 實驗設備與方法……………………….………………………23
3-1 實驗材料........................................23
3-2 實驗設備........................................24
3-2-1 實驗儀器與設備.................................24
3-2-2 油品性質分析之實驗設備..........................26
3-3 觸媒裂解反應器設計................................27
3-4 實驗方法........................................28
3-4-1裂解油品製備....................................28
3-4-2 MCM觸媒合成製備................................29
3-5 油品性質測試.....................................29
第四章 結果與討論....................................36
4-1 棕櫚生質柴油經觸媒裂解後的油品性質..................36
第五章 結論與建議.....................................51
5-1 結論............................................51
5-2 建議............................................51
參考文獻.............................................53
表..................................................60
圖..................................................65
附錄 一..............................................77
[1] E. Crabbe, C.N. Hipolito, G. Kobayashi, K. Sonomoto, A. Ishizaki, “Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties”, Process Biochemistry, Vol. 37, pp. 65-71, 2001.
[2] 張素美,歐盟節能政策概況,經濟部能源局,pp. 1,2008年9月。
[3] 謝惠子,「因應國際能源價格飆漲之台灣能源價格政策」座談會,經濟部能源局,能源論壇,pp. 1,2008年6月。
[4] 謝惠子,綠色城鄉(Green County)計畫啟動,經濟部能源局,再生能源,再生能源,pp. 1-3,2007年10月。
[5] A. Srivastava, B. Senguptab, S.A. Dutta,“Source apportionment of ambient VOCs in Delhi City”, Science of the Total Environment, Vol. 343, pp. 207-220, 2005.
[6] M. P. Dorado, E. Ballesteros, J. M. Arnal, J. Gomez, F. J. Lopez, “Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil”, Fuel, Vol. 82, pp. 1311-1315, 2003.
[7] 馮怡蓁,含二氧化鈦中孔洞材料之製備、鑑定及催化應用,國立中央大學化學研究所碩士論文,2007。
[8] 吳莉莉,微波合成與鑑定三度空間SBA-16及奈米尺度中孔分子篩,中原大學化學系碩士學位論文,2004。
[9] R.L. McCormick, M. Ratcliff, L. Moens, R. Lawrence,“Several factors affection the stability of biodiesel in standard accelerated tests”, Fuel Processing Technology, Vol. 4, pp. 227-242, 1993.
[10] G. Knothe,“Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters”, Fuel Processing Technology, Vol. 86, pp. 1059-1070, 2005.
[11] 楊寶旺,物質科學化學篇(上),龍騰文化事業公司,pp. 2-46,2001。
[12] J. Y. Park, D. K. Kim, J. P. Lee, S. C. Park, Y. J. Kim, J. S. Lee, “Blending effects of biodiesels on oxidation stability and low temperature flow properties”, Bioresource Technology, Vol. 99, pp. 1196-1203, 2008.
[13] J. P. Cosgrove, D.F. Church, W. A. Pryor, “The kinetics of the autooxidation of polyunsaturated fatty acids”, Lipids, Vol. 22, pp. 299-304, 1987.
[14] N.U. Soriano, V.P. Migo, M. Matsumura,“Ozonized vegetable oil as pour point depressant for neat biodiesel”, Fuel, Vol. 85, pp. 25-31, 2006.
[15] 巫淼鑫,鄔國英,韓瑛,6種食用植物油及其生物柴油中脂肪酸成分的比較研究,中國油脂,Vol. 28(12), pp. 65-67, 2003.
[16] 吳謀成,生物柴油,化學工業出版社,中國北京, pp. 122-123,2008。
[17] S.K. Karmee, A. Chadha, “Preparation of biodiesel from crude oil of Pongamia pinnata”, Bioresource Technology, Vol. 96, pp. 1425-1429, 2005.
[18] A. Kleinova, J. Paligova, M. Vrbova, J. Mikulec, J. Cvengro?, “Cold flow properties of fatty esters”, Process Safety and Environmental Protection, Vol. 85, pp. 390-395, 2007.
[19] R.O. Dunn, M.O. Bagby, “Low-temperature properties of triglyceride-based diesel fuels: transesterified methyl esters and petroleum middle distillate/ester blends”, Journal of the American Oil and Chemical Society, Vol. 72, pp. 859-904, 1995.
[20] C.W. Chiu, L.G. Schumacher, G.J. Suppes, “Impact of cold flow improvers on soybean biodiesel blend”, Biomass and Bioenergy, Vol. 27, pp. 485-491, 2004.
[21] 段大立,柴油降凝劑在內燃機車運輸中的應用,Railway Locomotive and Rolling Stock Workers, Vol. 3, pp. 5-7, 2005.
[22] J.B. Heywood,蘇金佳譯,內燃機,國立編譯館,台灣台北, pp. 72,1996。
[23] 柯清水,石油化學概論,正文書局,台灣台北, pp.161-170,1992。
[24] J.M. Goodrum, M.A. Eiteman, “Physical properties of low molecular weight triglycerids for the development of bio-diesel fuel models”, Bioresource Technology, Vol. 56, pp. 55-60, 1996.
[25] R.O. Dunn, M.O. Bagby, “Low-temperature filterability properties of alternative diesel fuels from vegetable oils”, Fuel and Energy Abstracts, Vol. 38, pp. 330-330. 1997.
[26] American Society for Testing Materials, ASTM Standard D2500, , Philadelphia, USA, pp. 268–70, 1991.
[27] 韓偉,黃鳳洪,楊湄,劉昌盛,黃慶德,生物柴油低溫流動性及改進方法研究進展,化工進展,Vol. 26, pp. 38-41, 2007。
[28] D. Pioch, P. Lozano, M.C. Rasoanantoanddre, “Biofuels from catalytic cracking of tropical vegetable oils”, Oleagineux, Vol. 48, pp. 289-291, 1993.
[29] S. V. Ranganathan, S. L. Narasimhan, K. Muthukumar, “An overview of enzymatic production of biodiesel”, Bioresource Technology, Vol. 99(10), pp. 3975-3981, 2007.
[30] D. Meier, O. Faix, “State of the art of applied fast pyrolysis of lignocellulosic materials: a review ”, Bioresource Technology, Vol. 68, pp. 71-77, 1999.
[31] F. A. Agblevor, S. Besler, “Inorganic compounds in biomass feedstocks(1): effect on the quality of fast pyrolysis oils”, Energy and Fuels, Vol. 10, pp. 293-298, 1996.
[32] A.F. Drummond, L. Drummond, “Pyrolysis of sugar cane bagasse in a wire-mesh reactor”, Industrial and Engineening Chemistry Research, Vol. 35, pp.1263-1268, 1996.
[33] N.S. Nesterenko, O.A. Ponomoreva, V.V. Yuschenko, I.I. Ivanova, F. Testa, F.D. Renzo, F. Fajula, “Dehydrogenation of ethylbenzene and isobutene over Ga- and Fe-containing mesoporous silicas”, Applied Catalysis, Vol. 254, pp. 261-272, 2003.
[34] O. Onay, S.H. Beis, O.M. Kockar, “Fast pyrolysis of rape seed in pyrolysis”, Journal of Analytical and Applied Pyrolysis, Vol. 58-59, pp. 995-1007, 2001.
[35] S. Ivan, G. Varhegyi, M.J. Antal, “Thermogravimetric / mass spectrometric characterization of the thermal decomposition of (4-O-methyl-D-glucurono)-D-xylan”, Journal of Applied Polymer Science, Vol, 36, pp. 721-728, 1988.
[36] C. Acikgoz, O. Onay, O. M. Kockar, “Fast pyrolysis of linseed:product yields and compositions”, Journal of Analytical and Applied Pyrolysis, Vol. 71, pp. 417-429, 2004.
[37] F. Karaosmanoglu, E. Tetik, “Fuel properties of pyrolytic oil of the straw and stalk of rape plant”, Renewable Energy, Vol. 16, pp. 1090-1093, 1999.
[38] 邱至強,棕櫚油生質柴油的燃料劣化特性之探討,國立臺灣海洋大學輪機工程學系碩士學位論文,2004。
[39] Y.M. Liu, Y. Cao, N. Yi, W.L. Feng, W. L. Dai, S.R. Yan, H.Y. He, K.N. Fan, “Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane”, Journal of Catalysis, Vol. 224, pp. 417-428, 2004.
[40] 吳榮宗,工業觸媒概論,黎明出版社,台灣台北, pp.76-80,2001。
[41] 譚蕩波,工業化學程序技術,高立圖書有限公司,台灣台北, pp. 321-329,1987。
[42] 李定粵,觸媒的原理與應用,正中出版社,台灣台北, pp. 4-5,1991。
[43] B. Solsona, T. Blasco, J.M. Lopez Nieto, M.L. Pena, F. Rey, A. Vidal-Moya, “Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes”, Journal of Catalysis, Vol. 203, pp. 443-452, 2001.
[44] E.V. Kondratenko, M. Cherian, M. Baerns, D. Su, R. Schlogl, X. Wang, I.E. Wachs, “Oxidative dehydrogenation of propane over V/MCM-41 catalysts: comparison of O2 and N2O as oxidants”, Journal of Catalysis, Vol. 234, pp. 131-142, 2005.
[45] Y.M. Liu, W.L. Feng, T.C. Li, H.Y. He, W.L. Dai, W. Huang, Y. Cao, K.N. Fan, “Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene”, Journal of Catalysis, Vol. 239, pp. 125-136, 2006.
[46] D. Pioch, P. Lozano, M.C. Rasoanantoanddro, “Biofuels form catalytic cracking of tropical vegetable oils”, Oieagineux, Vol. 48, pp. 289-291, 1993.
[47] K. Sipila, E. Kuoppala, L. Fagernas, A. Oasmaa, “Cha racterization of biomass-based flash pyrolysis oils, Biomass and bioenergy”, Vol. 14(2), pp. 103-113, 1998.
[48] P. A. Horne, P. T. Williams, “Influence of temperature on the products form the flash pyrolysis of biomass”, Fuel, Vol. 75(9), pp. 1051-1059, 1996.
[49] P. Ku?trowski, Y. Segura, L. Chmielarz, J. Surman, R. Dziembaj, P. Cool, E.F. Vansant, “VOx supported SBA-15 catalysts for the oxidative dehydrogenation of ethylbenzene to styrene in the presence of N2O”, Catalysis Today, Vol. 114, pp. 307-313, 2006.
[50] M.W. Balskos and E.E. Hernandez, “Catalyst character and performance in edible oil hydrogenation”, Catalysis Today, Vol. 35, pp. 415-425, 1997.
[51] V.C. Corberan, M.J. Jia, J.E. Haskouri, R.X. Valenzuela, D.B. Porter, P. Amoros, “Oxidative dehydrogenation of isobutane over Co-MCM-41 catalysts”, Catalysis Today, Vol. 91-92, pp.127-130, 2004.
[52] 陳恭府,超低硫柴油?配生質柴油之油品特性及污染排放分析,國立中山大學環境工程研究所碩士論文,2005。
[53] 闕健全,食品化學,新文京開發,第6章,pp. 121-134, 2005。
[54] D.R. Burri, K.M. Choi, J.H. Lee, D.S. Han, S.E. Park, “Influence of SBA-15 support on CeO2–ZrO2 catalyst for the dehydrogenation of ethylbenzene to styrene with CO2”, Catalysis Communications, Vol. 8, pp. 43-48, 2007.
[55] Y. Lou, H. Wang, Q. Zhang, Y. Wang, “SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen”, Journal of Catalysis, Vol. 247, pp. 245-255, 2007.
[56] R.E. Beal, “Methods to improve unhydrogenated soybean oil”, Soybean and Oil Processing, Vol. 8, pp. 10-11, 1977.
[57] J. Du, H. Xu, J. Shen, J. Huang, W. Shen, D. Zhao, “Catalytic dehydrogenation and cracking of industrial dipentene over M/SBA-15 (M = Al, Zn) catalysts”, Applied Catalysis A: General, Vol. 296, pp.186-193, 2005.
[58] C.Y. May, Y.C. Liang, C.S. Foon, M.A. Ngan, C.C. Hook, Y. Basiron, “Key fuel properties of palm oil alkyl esters”, Fuel, Vol. 84, pp. 1717-1720, 2005.
[59] M.S. Graboski and R.L. McCormick, “Combustion of fat and vegetable oil derived fuels in diesel engine”, Progressive Energy and Combustion Science, Vol. 24, pp.125-164,1998.
[60] S.T. Wong, H.P. Lin, C.Y. Mou. “Tubular MCM-41-supported transition metal oxide catalysts for ethylbenzene dehydrogenation reaction”, Applied Catalysis A: General, Vol. 198, pp. 103-114, 2000.
[61] 廖憲忠,燃油技術,台塑企業,第37卷第3期,pp. 71-77,2004。
[62] P. Ku?trowski, L. Chmielarz, J. Surman, E. Bidzi?ska, R. Dziembaj, P. Cool, E.F. Vansant, “Catalytic Activity of MCM-48-, SBA-15-, MCF-, and MSU-Type Mesoporous Silicas Modified with Fe3+ Species in the Oxidative Dehydrogenation of Ethylbenzene in the Presence of N2O”, J. Phys. Chem A, Vol. 109(43), pp. 9808-9815, 2005.
[63] A.V. Tomasevic and S.S.S. Marinkovic, “Methanolysis of used frying oil”, Fuel Processing Technology, Vol. 81, pp. 1-6, 2003.
[64] J. Cvenngos and Z. Cvengrosova, “Used frying oils and fats and their utilization in the production of methyl ester of high fatty acids”, Biomass and Bioenergy, Vol. 27, pp. 173-181, 2004.
[65] Y. Ohishi, T. Kawabata, T. Shishido, K. Takaki, Q. Zhang, Y. Wang, K. Takehira, “Dehydrogenation of ethylbenzene with CO2 over Cr-MCM-41 catalyst”, Journal of Molecular Catalysis A: Chemical, Vol. 230, pp. 49-58, 2005.
[66] B.R. Moser, S.Z. Erhan, “Branched chain derivatives of alkyl oleates: tribological, rheological, oxidation, and low temperature properties”, Fuel, Vol. 87, pp. 2253-2257, 2008.
[67] CNS15072生質柴油-脂肪酸甲酯,中華民國國家標準,pp. 2。2007。
[68] H. Prankl, W. Korbitz, M. Mittelbach, M. Worgetter, “Review on biodiesel standardization world-wide, prepared for IEA bioenergy task 39”, subtask biodiesel, Federal Institute for Agricultural Engineering, Wieselburg, Austria, 2004.
[69] Green Teee公司,K45900型手動冷濾點測試儀操作手測,2008。
[70] 李唐,脂肪酸甲基酯:生質柴油與潤滑油,國立台北科技大學生質潤滑油成果發表暨綠色能源科技研討會,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top