(3.226.72.118) 您好!臺灣時間:2021/05/13 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳祐甯
研究生(外文):Yu-Ning Wu
論文名稱:氣動式微幫浦吸入口位置與噴嘴長度的最佳化設計組合
論文名稱(外文):Optimal Design Combination of Suction Inlet Location and Nozzle Length of a Gas-driven Micropump
指導教授:闕振庚
指導教授(外文):S. G. Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:氣動式微幫浦數值模擬負壓式FLUENT微幫浦性能
外文關鍵詞:gas-driven micropumpnumerical simulationnegative-pressure typeFLUENTmicropump performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
由於負壓式微幫浦相較於其它驅動方式的微幫浦,具有結構簡單及可驅動任意流體等優勢,因此本研究針對一固定外型之負壓式氣動微幫浦,利用計算流體力學模擬軟體FLUENT作為分析工具,將微幫浦吸入口位置及噴嘴長度做不同的變換搭配,探討微幫浦內部流場情形及不同搭配對於微幫浦能力的影響,找出微幫浦吸取流量的最佳化設計。
本研究的重要結論包括:不論開啟單級或多級的側向吸入口,當微幫浦吸入口的開口位置與噴嘴出口垂直時,吸入口的開口剛好對應於噴嘴出口,則微幫浦有最佳的吸取流量;在各種單級開口中,由於單級平行開口的流體流入方向與噴流同向,流體不會受到過多的擾動或阻力,因而成為本研究最佳的吸入口開啟位置;在開啟多級開口時,則以同時開啟前方及後段吸入口的設計為佳,因為噴流從前方吸入口吸入流體後,噴流流至漸縮流道前端時可再利用牽引作用從後段吸入口吸取流體而增加流量;無論單級開口或多級開口的任何情況,當噴嘴出口伸至漸縮流道後,微幫浦的吸取流體能力便大幅下降。
In comparison to other micropumps with different driving methods, a negative-pressure micropump can drive arbitrary fluids and it has simpler structure. Therefore, a fixed-shape gas-driven micropump of negative- pressure type was used in the present study. The study utilized a CFD code of FLUENT and as the analysis tool to analyze the internal flow fields inside the micropump in which the nozzle length is varied with various openings of suction inlets. In order to obtain the optimal design for pumping flow rates of the micropump, the effects on micropump performance were analyzed by the various combinations of nozzle length and suction inlets.
Major conclusions of the analyses for designing the gas-driven micropump were obtained in the present study. First of all, among the cases of single-opening and multi-opening vertical to the nozzle, the optimal suction flow rates could be obtained when the nozzle outlet location should correspond to the suction inlet opening. For the parallel single-opening cases, there was fewer shear force could disturb the flow due to the same directions of the suction inlet flow and the driving flow. As a result, the parallel cases were the optimal design of suction inlet opening in the present study. For the multi-opening cases, both suction inlet openings in the front of the pump and near the converging section could provide a better micropump flow rate. The reason for that is the suction flow rate is enhanced due to entrainment effects at the opening near the converging section of the micropump. For all of the single-opening and multi-opening cases in the study, the pumping capacity of the micropump significantly deteriorated when the nozzle length extended to the converging section of the micropump.
中文摘要------------------------------------------------ i
英文摘要------------------------------------------------ ii
目錄--------------------------------------------------- iv
圖目錄-------------------------------------------------- vi
表目錄-------------------------------------------------- ix
符號說明-------------------------------------------------x
第一章 導論--------------------------------------------- 1
1.1 研究動機-------------------------------------------- 1
1.2 文獻回顧-------------------------------------------- 2
1.2.1 壓力式微幫浦-------------------------------------- 2
1.2.2 非壓力式微幫浦------------------------------------- 5
1.2.3 氣動式微幫浦--------------------------------------- 7
1.3 研究目的與方法--------------------------------------- 9
第二章 解析理論------------------------------------------ 12
2.1 統御方程式------------------------------------------ 12
2.1.1 連續方程式---------------------------------------- 12
2.1.2 動量方程式---------------------------------------- 14
2.2 紊流理論-------------------------------------------- 18
2.2.1 雷諾應力------------------------------------------ 19
2.2.2 紊流模型------------------------------------------ 21
第三章 數值分析------------------------------------------ 26
3.1 數值模擬方法---------------------------------------- 26
3.1.1 FLUENT模擬軟體------------------------------------ 26
3.1.2 網格的建構---------------------------------------- 27
3.1.3 流場模擬步驟-------------------------------------- 29

3.2 流場幾何尺寸與邊界條件------------------------------- 30
3.2.1 微幫浦基本尺寸及結構變化--------------------------- 30
3.2.2 邊界條件設定-------------------------------------- 33
第四章 結果與討論--------------------------------------- 36
4.1 各單級開口配合各不同噴嘴長度之模擬結果----------------- 36
4.1.1 前段開口F的模擬結果-------------------------------- 36
4.1.2 中段開口M的模擬結果------------------------------- 43
4.1.3 後段開口L的模擬結果-------------------------------- 49
4.1.4 平行開口P的模擬結果-------------------------------- 53
4.2 各多級開口配合各不同噴嘴長度之模擬結果----------------- 57
4.2.1 同時開啟F、M及L開口的模擬結果----------------------- 58
4.2.2 同時開啟P與F開口的模擬結果-------------------------- 61
4.2.3 同時開啟P與M開口的模擬結果-------------------------- 63
4.2.4 同時開啟P與L開口的模擬結果-------------------------- 66
4.3 單級開口與多級開口微幫浦性能的最佳化比較---------------- 68
第五章 結論與建議---------------------------------------- 74
5.1 結論----------------------------------------------- 74
5.2 建議----------------------------------------------- 75
參考文獻------------------------------------------------ 77
1. Michael Koch, Nick Harris, Alan G.R. Evans, Neil M. White, and Arthur Brunnschweiler, “A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation,” Sensors and Actuators A: Physical, Volume 70, Issues 1-2, 1 October 1998, Pages 98-103.
2. Zenger, R., Richter, M., and Sandmaier, H., “A Micro membrane pump with electrostatic actuation,” Proceeding of IEEE Micro Electro Mechanical Systems Workshop, Travemunde, Germany, 1992, pp. 19-24.
3. Zengerle, R., and Ulrich, J.,“ A bi-directional silicon micropump,” Sensors and Actuators A, Vol. 50, 1995, pp. 81-86.
4. Xu, Dond, and Wang, Li, “ Characteristics and Fabrication of NiTi╱Si Diaphragm Micropump,” Sensors and Actuators A, v 93, 2001, pp. 87-92.
5. Stemme, E. and Stemme, G. Valveless diffuser/nozzle-based fluid pump. Sensors and Actuators, A: Physical, 1993, 39(2), 159-167.
6. A. Olsson, P. Enoksson ,G. Stemme,and E. Stemme,“ A Valveless Planar Pump Isotropically Etched in Silicon, ” Proceedings of Micromechanics Europe 1995,(Copenhagen,Denmark),120(1995).
7. Hsu, T.-R., MEMS & Microsystems Design and Manufacture, Published by McGraw-Hill Company, 2002, pp. 87-90.
8. Bart, S. F., Tavrow, L. S., Mehregany, M., and Lang, J., “Microfabricated electrohydrodynamic pumps,” Sensors and Actuators, v A21-A23, 1990, pp. 193-197.
9. Kashani, R., Kang, S., and Hallianan, K. P., “Electro- hydrodynamic pumped hydraulic actuation with application to active vibration control,’ Proceedings of SPIE - The International Society for Optical Engineering, v 3675, 1999, pp. 180-189. Proceedings of the 1999 Smart Structures and Materials on Smart Materials Technologies, Mar 3-Mar 4 1999, Newport Beach, CA, USA.
10. Manz, A., Effenhauser, C. S., Burggraf, N., Harrison, D. J., Seller, K., and Fluri, K., “Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems,” Journal of Micromechanics and Micro Engineering, v 4, 1994, pp. 257-265.
11. Li, Paul C. H., and Harrison, J. D., “Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem., v 69, 1997, pp.154-158.
12. Lofdahl, L., and Gad-el-Hak, M., “MEMS applications in turbulence and flow control,” Progress in Aerospace Sciences, v 35, n 2, Feb, 1999, pp. 101-203.
13. Li, Paul C. H., and Harrison, J. D., “Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects,” Anal. Chem., v 69, 1997, pp.154-158.
14. Jang J., and Lee S. S., 2000, “ Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump,” Sensors and Actuators A, v 80, pp. 84-89.
15. Kaemper, K.-P., Doepper, J., Ehrfeld, W., and Oberbeck, S., “Self-filling Low-cost Membrane Micropump,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, Jan 25-29 1998, Heidelberg, Ger, pp. 432-437.
16. Zanzucchi, P. J., McBride, S. E., Burton Charlotte A., and Cherukuri Satyam C., “Apparatus and Methods for Controlling Fluid Flow in Microchannels,” Patent No.US5632876, Publication Date May 27,1997.
17. 陳全智、呂仁智、闕振庚、嚴明明,“利用濕式蝕刻技術來設計與製作氣動微型幫浦”中華民國機械工程研討會,2006.
18. 蔡岳峰, ”提升氣動式微幫浦性能的微流道結構設計”, 台灣海洋大學碩士論文, 2007.
19. 王俊生, ”氣動式微幫浦內部噴嘴長度對於幫浦性能的影響”, 台灣海洋大學碩士論文, 2008.
20. Ian. W. Eames, and Ali. E. Ablwaifa,“Use of CFD in the prediction of a jet-pump performance”,HPC 2004 – 3rd International conference on Heat Powered Cycles ,2004.
21. 鍾永強、吳得群、郭遠峰、黃士豪, “氣動式微流體驅動裝置及方法,”中華民國專利, 第30 卷第12 期, 專利證號177168I.
22. Nicholas J. Georgiadis, Dennis A. Yoder, and James R. DeBonis, “A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields ”, NASA/TM—1999-209184.
23. Bruce R. Munson, Donald F. Young, and Theodore H. Okiishi, “Fundamentals of Fluid Mechanics 5th Edition”, P. 404.
24. Boussinesq, J., “Essai Sur La Theorie Des Eaux Courantes,” Mem.Presentes Acad. Sci., vol. 23, Paris, 1877,p. 46.
25. Prandtl, L. “Uber die ausgebildete Turbulenz,” Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, 1962, pp. 62-74.
26. McDonald, H. and Camerata, F. J., “An Extended Mixing Length Approachfor Computing the Turbulent Boundary Layer Development,”Computation of Turbulent Boundary Layers─1968 AFOSR-IFP-StanfordConference,vol 1, Stanford University, California, 1968, pp. 83-98.
27. Malik, M. R. and Pletcher, R. H., “A Study of Some Turbulence Models for Flow and Heat Transfer in Ducts of Annular Cross- Section,” J. HeatTransfer, vol. 103, 1981, pp. 146-152.
28. Wilcox, D.C. (2004), Turbulence Modeling for CFD, ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc..
29. Wilcox, D. C., “Reassessment of the Scale Determining Equation for Advanced Turbulence Models,” AIAA J., vol. 26, 1988, pp. 1299-1310.
30. 陳政嚴, ”抽除式微幫浦性能的數值模擬”, 台灣海洋大學碩士論文, 2008, P.18.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔