(18.204.227.34) 您好!臺灣時間:2021/05/17 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李元凱
研究生(外文):Yuan-Kai Lee
論文名稱:非預混雙旋流燃燒噴嘴設計與分析
論文名稱(外文):Analysis of Flow Patterns and Combustion Efficiency behind the Non-Premixed Dual-Swirling Combustion Nozzles
指導教授:閻順昌
指導教授(外文):Shun-Chang Yen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:87
中文關鍵詞:太極型控制圓盤旋噴流燃燒效率
外文關鍵詞:TaiChi-type discSwirling jetCombustion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以太極型之控制圓盤,置於燃燒器上用以控制流場特性,經由此新型設計,可有效提升原燃燒器燃燒效率,最終達到節能減碳的目的。本實驗將太極型控制圓盤置於燃燒器出口處,流體經過其機構時,會將大部分軸向動量轉變成徑向動量,而產生旋流的效果提升其紊流強度。實驗方式為使用雷射光頁輔以煙線流場觀測技術,探討出受太極型控制圓盤所調制出的各流場型態,再於中心噴流釋放CO2氣體,量測其濃度分佈情形,而得知各特徵模態的混合能力。再使用熱電偶、拍照攝影技術等實驗方法,討論出火焰流場其特徵模態、火焰高度、溫度分佈、熱量釋放率。
經由上述實驗方式,在等溫流場時,可區分為以下模態:噴流模態(Jet flow)、雙迴流泡模態(Dual bubble)、偏向流模態(Deflect flow)、不穩定流模態(Unstable flow)、紊流模態(Turbulent flow)。不穩定流模態(Unstable flow)其混合能力為最佳,如再配合上12道膛線噴嘴,其混合效率幾乎為100%。於火焰流場時,可區分為以下模態:噴流火焰模態(Jet flame)、閃爍火焰模態(Flickering flame)、迴流火焰模態(Recirculated flame)、橫八字型火焰模態(Lazy-eight flame)、旋流火焰模態(Swirling flame)、跳脫火焰模態(Lifted flame)。以橫八字型火焰模態,其熱量釋放率為最佳。故使用太極型控制圓盤於燃燒器時,相較於噴嘴其整體燃燒總熱量釋放率可大幅提升約50%。
Abstract
This study utilized a TaiChi-type disc to modulate the flow fields behind a combustor. The novel TaiChi-type disc increases the combustion efficient significantly, and therefore the goal of energy saving and carbon reduction. The TaiChi-type disc was installed at the exit of a combustor. Most of the axial momentum was transformed to the radial momentum when the flow passed through the TaiChi-type disc. Therefore, the turbulence intensity was increased. A laser-light sheet and the smoke-wire flow visualization scheme were utilized to explore the flow characteristics modulated using the TaiChi-type disc. Furthermore, the mixing efficiency of the characteristic modes was determined by measuring the concentration of carbon dioxide exhaled from the disc center. Additionally, the flame modes, flame length, temperature distribution and the heat-release rate were determined using the thermal couple and direct photography. The experimental results revealed that the isothermal flow fields might be categorized into five modes, that is, the jet flow, dual bubble, deflect flow, unstable flow and turbulent flow modes. The highest mixing efficiency occurs in the unstable flow mode. Especially, the addition of a 12-rifled nozzle increase the mixing efficiency near 100% in the unstable flow mode. Moreover, the flame fields were classified into six flame modes, that is, the jet flame, flickering flame, recirculated flame, lazy-eight flame, swirling flame and the lifted flame modes. The highest heat-release rate occurs in the lazy-eight flame mode. Consequently, the TaiChi-type modulated combustor can increase the global heat-release rate about 50% higher than solitary combustor.
目錄
摘要………………………………………………………………………… i
Abstract…………………………………………………………………. ii
致謝………………………………………………………………………… iii
目錄………………………………………………………………………… iv
表圖索引……………………………………………………………………. vi
符號表……………………………………………………………………… xi
第一章 緒論………………………………………………………………. 1
1.1 研究動機…………………………………………………………. 1
1.2 文獻回顧………………………………………………………… 2
1.3 研究目標………………………………………………………… 5
第二章 實驗設備、儀器與方法…………………………………………. 7
2.1 實驗方法………………………………………………………… 7
2.2 實驗設備………………………………………………………… 7
2.3 實驗儀器………………………………………………………… 9
2.3.1 流量量測–浮子式流量計…………………………………… 9
2.3.2 流場可視化–雷射光頁輔助煙線流場觀察法……………… 9
2.3.3 速度量測–質點影像速度儀………………………………… 12
2.3.4 濃度分析量測–氣體濃度分析儀…………………………… 17
2.3.5 渦旋結構的偵測–熱線風速儀……………………………… 17
2.3.6 溫度量測–熱電偶…………………………………………… 18
2.3.7 移動機構……………………………………………………… 18
2.3.8 膛線型旋噴流控制器………………………………………… 18
2.3.9 太極型旋噴流控制器………………………………………… 19
第三章 等溫流場的流場模態……………………………………………. 20
3.1 煙線流型………………………………………………………… 20
3.2 特徵模態與特徵區域…………………………………………… 22
3.2.1 特徵模態……………………………………………………… 22
3.2.2 特徵區域……………………………………………………… 23
3.3 平均流線………………………………………………………… 24
3.4 濃度分佈與混合特性…………………………………………… 25
3.4.1 濃度分佈……………………………………………………… 25
3.4.2 混合特性………………………………………………………. 28
3.5 渦旋結構………………………………………………………… 29
3.5.1 渦旋結構之頻率特性………………………………………… 29
第四章 燃燒性質…………………………………………………………. 31
4.1 火焰模態………………………………………………………… 31
4.2 火焰特徵模態與特徵區域……………………………………… 32
4.3 火焰長度………………………………………………………… 33
4.4 火焰的溫度分佈………………………………………………… 34
4.5 旋轉角度………………………………………………………… 37
4.6 燃燒特性………………………………………………………… 37
第五章 結論與建議………………………………………………………. 40
5.1 結論……………………………………………………………… 40
5.2 建議……………………………………………………………… 41
參考文獻……………………………………………………………………… 42
參考文獻

[1]Carmody, T., “Establishment of the wake behind a disk,” J. Basic Eng., Vol. 86, Dec., 1964, pp. 869-882.
[2]Schefer, R. W., Namazian, M., and Kelly, J., “Velocity measurement in turbulent bluff-body stabilized flows,” AIAA J., Vol. 32, 1994, pp. 1844-1851.
[3]Ravinesh, C. D., Jianchun, M., Graham, J. N., “The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet,” Experimental Thermal and Fluid Science, Vol. 32, June, 2007, pp. 545-559.
[4]Winterfeld, G., “On process of turbulent exchange behind flame holders,” Tenth Symposium on Combustion, The Combustion Institute, Academic Press, New York, 1965, pp. 1265-1273.
[5]Calvert, J. R.,“Experiments on the low-speed flow past cones,”Journal of Fluid Mechanics, Vol. 27, 1967, pp. 273-289.
[6]Taylor, A . M . K . P., and Whitelaw, J. H ., “Veclocity characteristics in the turbulent near wakes of confined axisymmetric bluff bodies,” Journal of Fluid Mechanics, Vol. 139, Feb, 1984, pp. 391-416.
[7]Durao, D. F. G., and Whitelaw, J. H., “Velocity characteristics of the flow in the near wake of a disk,” Journal of Fluid Mechanics, Vol. 86, 1978, pp. 369-385.
[8]Beer, J. M., and Chigier, N. A., “The flow region near the nozzle in double concentric jets,” Trans. ASME D: Journal of Basic Engineering, Vol. 86, 1964, pp. 797-804.
[9]Li, X., and Takin, R. S., “A study of cold and combusting flow around bluff-body combustors,” Combust. Sci. Technol., Vol. 52, 1987, pp. 173-206.
[10]Rose, W. G., “A swirling round turbulent jet 1-mean-flow measurements,” J. Appl. Mech., Vol. 29, 1962, pp. 615-625.
[11]Chigier, N. A., and Chervinsky, A., “Experimental investigation of swirling vortex motions in jets,” J. Appl. Mech., Vol. 89, 1967, pp. 443-451.
[12]Kerr, N. M., and Fraser, D., “Swirl part 1: effect on axisymmetrical turbulent jets,” J. Institute Fuel., Vol. 38, 1965, pp. 519-526.
[13]Chigier, N. A., and Beer, J. M., “Velocity and static pressure distributions in swirling air jets issuing from annular and divergent nozzles,” Trans. ASME, Series D, Vol. 86, 1964, pp. 788-798.
[14]Baker, R. J., Hutchinson, P., Khallil, E. E., and Whitelaw, J. H., “Measurements of tree velocity components in a model furnace with and without combustion,“ Fifteenth Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, 1974, pp. 553-559.
[15]Escudier, M. P., and Keller, J. J., “Recirculation in swirling flow:a manifestation of vortex breakdown,” AIAA J., Vol. 23, 1985, pp. 111-116.
[16]Coghe, A., Solero, G., and Scribano, G., “ Recirculation phenomena in a natural gas swirl combustor,” Experimental Thermal and Fluid Science, Vol. 28, No. 7, September, 2004, pp. 709-714.
[17]Morcos, V. H., and Abdel-Rahim, Y. M., “Parametric study of flame length characteristics in straight and swirl light-fuel oil burners,” Fuel, Vol. 78, No. 8, Jun, 1999, pp. 979-985.
[18]Cha, M. S., Lee, D. S., and Chung, S. H., “Effect of swirl on lifted flame characteristics in nonpremixed jets,” Combustion and Flame, Vol. 117, No. 3, May, 1999, pp. 636-644.
[19]Huang, R. F., and Yen, S. C., “Axisymmetric swirling vertical wakes modulated by a control disk,” AIAA J., Vol. 41, No. 5, pp. 888-896.
[20]Vanoverberghe, K., Van den Bulck, E., and Tummers, M., “ Flow structure of lifted swirling jet flames,” Flow, Turbulence and Combustion, Vol. 73, No. 1, July, 2004, pp. 25-47.
[21]Masri, A. R., Kalt, P. A. M., and Barlow R. S., “The compositional structure of swirl-stabilised turbulent nonpremixed flames.” Combustion and Flame, Vol. 137, 2004, pp. 1-37.
[22]Cornaro, C., Fleischer, A. S., and Goldstein, R. J., “Flow visualization of a round jet impinging on cylindrical surfaces,” Experimental Thermal and Fluid Science, Vol. 20, Issue. 2, Oct, 1999, pp. 66-78.
[23]Flagan, R. C., and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 295-307.
[24]Cengel, Y. A., and Boles, M .A., Thermodynamics : An Engineering Approach, third edition, McGraw-Hill, 1983, pp. 901.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top