(3.210.184.142) 您好!臺灣時間:2021/05/09 09:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃祖虹
研究生(外文):Tsu-Hung Huang
論文名稱:具環型聚光鏡微質點影像測速儀之研製
論文名稱(外文):Development of a Micro Particle Image Velocimetry with an Annular Condenser
指導教授:沈志忠沈志忠引用關係
指導教授(外文):Jyh-Jong Sheen
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:111
中文關鍵詞:微質點影像測速儀發光二極體環型聚光鏡微流體晶片共軛焦PIV多相流觀測
外文關鍵詞:sub-mocronemulsionMEMSμPIVconfocal μPIVdroplet formation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
 質點影像測速儀一般由光源、具雙重曝光功能之數位相機、電腦所組成。其光源為滿足高亮度、高時間響應之需求,而多以雙脈衝雷射為之。然而,雙脈衝雷射卻有設備昂貴、體積龐大、保養不易、易造成使用人員傷害等缺失。
 本研究著眼於發光二極體之高效率、高頻率響應以及冷光等特性,利用高亮度發光二極體配合控制、散熱元件,取代脈衝雷射。更藉由環狀聚光鏡取得清晰的質點影像,完成高空間及時間解析度、免濾鏡、廉價、輕薄短小、操作簡便、且安全的新型微質點影像測速儀。本研究以具圓柱檔塊之微流道及流體動力聚焦微流場,測試此微質點影像測速儀之可行性。實驗結果顯示,在無濾鏡的情況下,此系統可取得高對比、高解析度的質點影像,並獲得精確的微流場觀測數據。
 此外,本研究亦藉由東京大學大島研究室所開發之高速多色共軛焦PIV 觀測平台,觀測以流體動力聚焦法產生液滴時連續相與分散相之流場變化,確認壓擠與滴出模式在流場上多相流之壓力、剪力交互作用之差異。亦將其結果與T 形流道比較,討論不同方式的微乳化晶片在產生微液滴上之異同。
In this study, a high-resolution micro particle image velocimetry (μPIV) is demonstrated. This μPIV system has special features to lower its cost and to enhance the resolution. A high power light emitting diode (LED) is used as the light source. A cardioid annular condenser is included in the microscope to achieve submicron resolution. The overall system is not only much cheaper but also safer than a μPIV system with double pulse laser. Even without filter, the annular condenser can produce high quality particle images with high signal to noise ratio. Flow field of a microchannel with a cylinder was used to test the μPIV system. The experimental results showed agreement with those from computer simulation software (CFD-ACE+). Flow fields of a microchannel with hydrodynamic focusing were also observed. In summary, experimental results demonstrate that this μPIV system has the potential to be widely used as a low-cost and high-resolution microfluidic flow visualization tool.
We also use a multicolor confocal μPIV system to investigate mechanism of microdroplet formations in a hydrodynimic focusing device. From experimental observations, the formation mechanism of droplets changes from squeezing mode to dripping mode as the capillary number increases. This finding is consistent with a similar conclusion of droplet formation for T-junction micrchannel in a previous study.
中文摘要....................................................................... i
Abstract........................................................................ ii
目錄.............................................................................. v
圖目錄....................................................................... viii
表目錄......................................................................... xi
第一章 緒論.............................................................. 1
1.1 微流體晶片..........................................................................1
1.2 微流場檢測技術..................................................................2
1.3 研究動機與目的..................................................................5
1.4 文獻回顧..............................................................................7
1.4.1 μPIV 技術之演進............................................................7
1.4.2 應用LED 照明之μPIV 技術.......................................................10
1.4.3 μPIV 之運用與發展...................................................... 11
第二章 具環型聚光鏡微質點影像測速儀之設計原理.................. 16
2.1 微流場可視化技術............................................................16
2.1.1 μPIV 技術......................................................................16
2.1.2 質點影像.......................................................................17
2.1.3 計算速度向量...............................................................22
vi
2.2 環狀聚光鏡系統簡介........................................................26
2.3 具環型聚光鏡微質點影像測速儀之設計........................................30
2.3.1 光源部件之替換...........................................................30
2.3.2 心型環狀聚光鏡...........................................................33
2.4 硬體架構............................................................................34
第三章 微質點影像測速儀之實驗結果................................... 35
3.1 測試微流道之流場可視化................................................35
3.1.1 煙線可視化...................................................................35
3.1.2 微流場數值模擬...........................................................37
3.1.3 微流場可視化...............................................................39
3.1.4 實驗值與理論結果之比較...........................................42
3.2 微流場實例觀測.................................................................44
第四章 多色共軛焦微質點影像測速儀之多相流觀測.................... 48
4.1 實驗設計與方法................................................................48
4.1.1 晶片設計與實驗材料...................................................48
4.1.2 實驗設置.......................................................................49
4.1.3 共軛焦 μPIV ................................................................50
4.1.4 實驗方法.......................................................................52
4.2 實驗結果與討論................................................................53
4.2.1 壓擠模式.......................................................................53
4.2.2 滴出模式.......................................................................56
4.2.3 綜合比較.......................................................................58
vii
4.3 多色共軛焦 μPIV 觀測結果.............................................60
第五章 結論與未來展望........................................... 61
5.1 具環型聚光鏡微質點影像測速儀....................................................61
5.2 多色共軛焦微質點影像測速儀之多相流觀測................................62
5.3 新式微質點影像測速儀之應用與未來展望....................................62
參考文獻.................................................................... 64
[1] M. Gad-el-Hak, The MEMS handbook: Taylor&Francis, 2005.
[2] S. Senturia, Microsystem design: Kluwer Academic Publishers, 2001.
[3] D. Meldrum and M. Holl, "Microfluidics: Microscale bioanalytical systems," Science, vol. 297, p. 1197, 2002.
[4] A. Stroock, S. Dertinger, A. Ajdari, I. Mezic, H. Stone, and G. Whitesides, "Chaotic mixer for microchannels." vol. 295, 2002, pp. 647-651.
[5] J.-J. Sheen, K.-Y. Ho, and Y.-M. Lee, "Three-dimensional hydrodynamic focusing with a circular microchannel," in 6th International ASME Conference on Nanochannels, Microchannels and Minichannels Darmstadt, Germany, 2008.
[6] H. Mishina and T. Asakura, "Measurement of velocity fluctuations in laser Doppler microscope by the new system employing the time-to-pulse height converter," Applied Physics A: Materials Science & Processing, vol. 5, pp. 351-359, 1975.
[7] H. Mishina, T. Koyama, and T. Asakura, "Velocity measurements of blood flow in the capillary and vein using a laser Doppler microscope," Applied Optics, vol.14, pp. 2326-2327, 1975.
[8] R. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual Review of Fluid Mechanics, vol. 23, pp. 261-304, 1991.
[9] M. Raffel, Particle image velocimetry a practical guide: Springer, 2007.
[10] Dantec Dynamics. http://dantec.net.dynamicweb.dk/
[11] S. Devasenathipathy, J. Santiago, and K. Takehara, "Particle tracking techniques for electrokinetic microchannel flows," Exp. Fluids, vol. 25, pp. 316-319, 1998.65
[12] I. Grant, S. Fu, X. Pan, and X. Wang, "The application of an in-line, stereoscopic, PIV system to 3-component velocity measurements," Experiments in fluids, vol. 19, pp. 214-221, 1995.
[13] K. Okamoto, S. Nishio, T. Kobayashi, T. Saga, and K. Takehara, "Evaluation of the 3D-PIV standard images (PIV-STD project)," Journal of Visualization, vol.3, pp. 115-123, 2000.
[14] C. Brucker, "3-D scanning-particle-image-velocimetry: Technique and application to a spherical cap wake flow," Flow, Turbulence and Combustion, vol. 56, pp. 157-179, 1996.
[15] G. Havener and F. Heltsley, "Design aspects and preliminary holographic-PIV measurements for a subsonic free shear layer flow channel," 1994.
[16] T. Kobayashi, Handbook of Particle Image Velocimetry: Morikita shuppan, 2002.
[17] C. Meinhart, S. Wereley, and M. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science and Technology, vol. 11, pp. 809-14, 2000.
[18] C. Meinhart, S. Wereley, and J. Santiago, "PIV measurements of a microchannel flow," Experiments in fluids, vol. 27, pp. 414-419, 1999.
[19] E. Delnoij, J. Westerweel, N. Deen, J. Kuipers, and W. Van Swaaij, "Ensemble correlation PIV applied to bubble plumes rising in a bubble column," Chemical Engineering Science, vol. 54, pp. 5159-5171, 1999.
[20] C. Meinhart, S. Wereley, and J. Santiago, "A PIV algorithm for estimating time-averaged velocity fields," Transactions-American Society of Mechanical Engineers Journal of Fluids Engineering, vol. 122, pp. 285-289, 2000.
[21] F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri, M. Sereno, P. Jetzer, A. Lobanov, M. Lopez-Caniego, and D. Herranz, "Overcoming the Rayleigh criterion limit with optical vortices," New J. Phys Phys Rev Lett, vol.97, p. 163903, 2003.
[22] A. Lanzillotto, T. Leu, M. Amabile, R. Wildes, and J. Dunsmuir, "Applications of x-ray micro-imaging, visualization and motion analysis techniques to fluidic microsystems," 1996, p. 123.
[23] R. Wildes, A. Lanzillotto, M. Amabile, T. Leu, D. Center, and N. Princeton, "Physically based fluid flow recovery from image sequences," 1997, pp.969-975.
[24] J. Santiago, S. Wereley, C. Meinhart, D. Beebe, and R. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, pp.316-319, 1998.
[25] A. Koutsiaris, D. Mathioulakis, and S. Tsangaris, "Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries," Measurement Science and Technology, vol. 10, pp. 1037-46, 1999.
[26] O. Chetelat and K. Kim, "Miniature particle image velocimetry system with LED in-line illumination," Measurement Science and Technology, vol. 13, pp.1006-1013, 2002.
[27] S. Hagsater, C. Westergaard, H. Bruus, and J. Kutter, "Investigations on LED illumination for micro-PIV including a novel front-lit configuration," Experiments in fluids, vol. 44, pp. 211-219, 2008.
[28] Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, "Visualization of convective mixing in microchannel by fluorescence imaging," Measurement Science and Technology, vol. 14, pp. 114-121, 2003.
[29] M. Ichiyanagi, Y. Sato, and K. Hishida, "Optically sliced measurement of velocity and pH distribution in microchannel," Experiments in fluids, vol. 43, pp.425-435, 2007.
[30] J. Park, C. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Experiments in fluids, vol. 37, pp. 105-119, 2004.
[31] H. Kinoshita, M. Oshima, and T. Kobayashi, "Multicolor confocal micro PIV system for multiphase flow measurement," in 12th ISFV German Aerospace Center, 2006.67
[32] M. Oishi, H. Kinoshita, M. Ohsima, T. Fujii, and T. Kobayashi, "Multicolor Confocal Micro PIV Measurement of Solid-fluid Interaction in Microflow," 2006.
[33] M. Oishi, H. Kinoshita, M. Oshima, T. Fujii, and T. Kobayashi, "Measurement of rotational motion of solid microbead using multicolor confocal micro PIV," in piv2007, 2007.
[34] M. Oishi, H. Kinoshita, T. Fujii, and M. Oshima, "Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction," in The 6th International Symposium on Measurement Techniques for Multiphase Flows Okinawa, JAPAN, 2008.
[35] N. Nguyen, C. Wang, T. Wong, L. LOW, and S. Ho, "A Silicon/glass-based microfluidic device for invetigation of Lagrangian velocity field in microdroplets," 2006, pp. 130-135.
[36] P. Vennemann, K. Kiger, R. Lindken, B. Groenendijk, S. Stekelenburg-de Vos, T. ten Hagen, N. Ursem, R. Poelmann, J. Westerweel, and B. Hierck, "In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart," Journal of biomechanics, vol. 39, pp. 1191-1200, 2006.
[37] H. Zheng, L. Liu, L. Williams, J. Hertzberg, C. Lanning, and R. Shandas, "Real time multicomponent echo particle image velocimetry technique for opaque flow imaging," Applied Physics Letters, vol. 88, p. 261915, 2006.
[38] P. Vennemann, R. Lindken, and J. Westerweel, "In vivo whole-field blood velocity measurement techniques," Experiments in fluids, vol. 42, pp. 495-511, 2007.
[39] M. Rossi, I. Ekeberg, P. Vennemann, R. Lindken, J. Westerweel, B. P. Hierck, and E. P. Tomasini, "In vitro study of shear stress over endothelial cells by Micro Particle Image Velocimetry (μPIV)," in 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 2006.
[40] M. Rossi, R. Lindken, B. P. Hierck, and J. Westerweel, "Single-cell level measurement of shape, shear stress distribution and gene expression of endothelial cells in microfluidic chips," in Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels Darmstadt, Germany, 2008.
[41] S. Haynes, J. Stone, P. Cheung, and W. Luk, "Video image processing with the Sonic architecture," Computer, vol. 33, pp. 50-57, 2000.
[42] M. Wernet, "Development of digital particle imaging velocimetry for use in turbomachinery," Experiments in fluids, vol. 28, pp. 97-115, 2000.
[43] C. Naiman and S. Pompian, "Multi-color, multi-pulse laser," Google Patents, 2001.
[44] OPLAN, "Particle Image Velocimetry (PIV) ". http://www.dpiv.cn/
[45] Deep Ocean, "The color of water: visibility," 1999. http://www.deepocean.net/deepocean/
[46] Thermo Scientific, "Fluorescent Polymer Microspheres (Aqueous)," 2009. http://www.thermo.com/com/cda/product/detail/1,,10138303,00.html
[47] K. Haruyuki, "共焦?????PIV ?用??微小液滴?部流動????研究," in Institute of Industrial Science. vol. doctor Tokyo, Japan: the University of Tokyo, 2006.
[48] Seika Measurement Technology, KONCERTO ver.1.0 software Manual: Seika Measurement Technology, 2007.
[49] B. Foster, "Focus on microscopy: A technique for imaging live cell interactions and mechanisms," AMERICAN LABORATORY, vol. 36, pp. 21-27, 2004.
[50] C.-C. Su, "Optical Lithography," 2005. http://nano.nchc.org.tw/dictionary/Optical_Lithography.html
[51] A. Vainrub, O. Pustovyy, and V. Vodyanoy, "Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser," Optics letters, vol.31, pp. 2855-2857, 2006.
[52] V. Vodyanoy, V. Petrenko, and T. Moore, "High-resolution optical microscope for quick detection of pathogens," Google Patents, 2003.
[53] Molecular Expressions Microscopy Primer Introduction to Microscopy, "Specimen Illumination With Darkfield Condensers," 2006.
[54] L. Bacha, Color atlas of veterinary histology: Wiley-Blackwell, 2000.
[55] D. Rothe, S. Wood, and B. Heeschen, "Imaging of Submicron Particulate in an Optical Flow Cell," Microscopy and Microanalysis, vol. 13, pp. 672-673, 2007.
[56] W. FM, Viscous fluid flow, 3rd edn. McGraw-Hill, New York, 2006.
[57] M. Van Dyke, An album of fluid motion: Stanford, CA, 1982.
[58] T. Thorsen, R. Roberts, F. Arnold, and S. Quake, "Dynamic pattern formation in a vesicle-generating microfluidic device," Physical Review Letters, vol. 86, pp.4163-4166, 2001.
[59] S. Anna, N. Bontoux, and H. Stone, "Formation of dispersions using "flow focusing" in microchannels," Applied Physics Letters, vol. 82, p. 364, 2003.
[60] Yokogawa Electric, "CSU22," 2009. http://www.yokogawa.co.jp/scanner/genri2.htm
[61] M. Oishi, H. Kinoshita, M. Oshima, T. Fujii, and T. Kobayashi, "Investigation of micro droplet formation in a T-shaped. junction using multicolor confocal micro-PIV," in Micro/Nanoscale Heat Transfer International Conference Tainan, Taiwan, 2008.
[62] Y. Tan, V. Cristini, and A. Lee, "Monodispersed microfluidic droplet generation by shear focusing microfluidic device," Sensors & Actuators: B. Chemical, vol.114, pp. 350-356, 2006.
[63] S. Huang, W. Tan, F. Tseng, and S. Takeuchi, "A monolithically three-dimensional flow-focusing device for formation of single/double emulsions in closed/open microfluidic systems," Journal of Micromechanics and Microengineering, vol. 16, pp. 2336-2344, 2006.
[64] A. Utada, E. Lorenceau, D. Link, P. Kaplan, H. Stone, and D. Weitz, "Monodisperse double emulsions generated from a microcapillary device." vol. 308: American Association for the Advancement of Science, 2005, pp. 537-541.
[65] Y. Morimoto, W. Tan, and S. Takeuchi, "Three-dimensional axisymmetric flow-focusing device using stereolithography," Biomedical microdevices, vol. 11, p. 369, 2009.
[66] S. Jaw, Y. Haik, and C. Chen, "Measurement of soap film flows using coolor PIV," in 15th ASCE Engineering Mechanics Conference New York, USA, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔