(3.238.96.184) 您好!臺灣時間:2021/05/08 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:戴義欣
研究生(外文):Yi-Hsin Tai
論文名稱:具有奈米粗糙之錐型光纖感測器的發展與應用
論文名稱(外文):Fabrication and Application of Tapered Fiber Sensor with Nanometer Surface Roughness
指導教授:魏培坤
指導教授(外文):Pei-Kuen Wei
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:光纖感測器散射奈米粗糙
外文關鍵詞:fiber sensorscatteringnano roughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用我們實驗室發展出的化學蝕刻的技術稱之為終端蝕刻法(End-etching Method),利用熱熔膠包覆以毛細現象製作出尖錐狀光纖探針。以電子顯微鏡觀察,此光纖探針在針尖表面具有數十奈米的口徑與奈米級的粗糙度。實驗發現,此種探針具有良好偵測環境折射率的能力,可量測折射率變化量在10-5 RIU (refractive index unit)。
實驗中比較四種不同廠牌光纖(3M, Thorlabs, AT&T, Prime) 的靈敏度差異,並從中找出影響靈偵測敏度的要素。使用633nm He-Ne和1300nm IR半導體雷射,測量光纖探針在不同折射率液體中的穿透光量。實驗中測得1300nm單模光纖比633nm光纖具有更高的靈敏度,其獲得折射率靈敏度可高達5870(%/RIU),光纖探針偵測極限算出的範圍在10-5RIU。進一步使用此探針於生物分子檢測上,我們量測人類免疫球蛋白IgG(Immunoglogulin G)在固定清洗次數下對光纖探針穿透量之影響,測得表面折射率變化隨IgG濃度增加而提升,目前可偵測的極限約為1 pg/ml。
本文中提出波導散射原理來佐證實驗現象,當表面環境折射率與光纖折射率差距大時,其散射能力強而穿透光量小,反之折射率差異小則散射能力差,光學穿透光量大。相較於其它量測表面環境折射率的元件,此論文中發展的光纖探針具有非常小的偵測空間,簡單的實驗製程與步驟,相當低的製造成本等好處。
In this thesis, optical fiber sensors using End-etching method were fabricated and tested. The fibers were coated with hot melt glue for chemical etching and used the capillary effect to form a sharp tip. As observed by the SEM, the tip size was around tens of nanometers and with a surface roughness also of nanometers. This kind of nano fiber tips was found to have very good sensitivity to environmental refractive index changes. The detection ability of the nano-fibers can achieve as high as 10-5 RIU (refractive index unit).
In the experiment, fibers brought from four different commercial companies (3M, Thorlabs, AT&T and Prime) were tested. The single-mode fibers for 633nm and 1330nm wavelengths were compared by measuring the transmission intensity under various refractive index liquids. The results showed that 1330nm single-mode fibers had better sensitivity than 633nm single-mode fibers. The sensitivity is as high as 5870 %/RIU in the refractive index range rom 1.33 to 1.35. The detection limit is 10-5 RIU if the power stability of the light source is 0.2%. The Immunoglobulin G (IgG) proteins were detected for the demonstration of biosensing applications. In the experiments, 1 pg/ml IgG can be detected by using the proposed nano fiber probes
The detection mechanism of the nano fiber sensors is based on light scattering by the rough surfaces of tapered fibers. A waveguide scattering model was used to account for the high-sensitivity and wavelength-dependent fiber sensors. When the refractive index difference between the tapered fiber and the surrounding medium increases, the transmission intensity decreases because of increasing light scattering. On the contrast, the transmission intensity increases when refractive index difference between fiber waveguide and outside surroundings is decreased. The proposed nano fiber sensors take advantages of small detection volume, high sensitivity, easy fabrication and very low cost.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XII
第一章 前言 1
1-1研究背景及動機 1
1-2光纖檢測介紹 2
第二章 實驗架構與實驗步驟 9
2-1製程方式比較 9
2-2檢測光纖製程 11
2-3實驗架構 16
2-4流道設計 20
2-5檢測步驟 21
第三章 實驗分析結果 24
3-1 RIU計算方式 24
3-2光纖品牌及表面比較 29
3-3 gold particle 接附光纖檢測 49
3-4 檢測機制 52
第四章 生物應用 57
4-1 ELISA (Enzyme-linked immunosorbent assay)原理 57
4-2抗原檢測 58
4-3重複性實驗 73
第五章 結論及未來工作 79
5-1實驗總結 79
5-2元件設計及展望 80
參考文獻 83
1. Lee, B., Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003. 9(2): p. 57-79.
2. Long, F., et al., Development of evanescent wave all-fiber immunosensor for environmental water analysis. Biosensors & Bioelectronics, 2008. 23(7): p. 952-958.
3. Rissin, D.M. and D.R. Walt, Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. Journal of the American Chemical Society, 2006. 128(19): p. 6286-6287.
4. Niu, S.Y., et al., Enzyme-enhanced fluorescence detection of DNA on etched optical fibers. Biosensors & Bioelectronics, 2009. 24(9): p. 2943-2946.
5. Yu-Cheng, L., et al., The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification. Sensors and Actuators B-Chemical, 2008. 133(2): p. 370-373.
6. Abrahamyan, I. and K. Nerkararyan, Surface plasmon resonance on vicinity of gold-coated fiber tip. Physics Letters A, 2007. 364(6): p. 494-496.
7. Allsop, T., et al., Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors. Applied Optics, 2009. 48(2): p. 276-286.
8. Fontana, E., Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk. Applied Optics, 2004. 43(1): p. 79-87.
9. Wang, R.H., et al., Immobilisation of DNA probes for the development of SPR-based sensing. Biosensors & Bioelectronics, 2004. 20(5): p. 967-974.
10. Lee, J.Y., et al., Single live cell refractometer using nanoparticle coated fiber tip. Applied Physics Letters, 2008. 93(17): p. 3.
11. Leung, A., P.M. Shankar, and R. Mutharasan, Real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody-immobilized tapered fibers. Sensors and Actuators B-Chemical, 2007. 123(2): p. 888-895.
12. Leung, A., P.M. Shankar, and R. Mutharasan, Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm. Sensors and Actuators B-Chemical, 2008. 131(2): p. 640-645.
13. Hoffmann, P., B. Dutoit, and R.P. Salathe. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips. 1995: Elsevier Science Bv.
14. Stockle, R., et al., High-quality near-field optical probes by tube etching. Applied Physics Letters, 1999. 75(2): p. 160-162.
15. Rindorf, L., et al., Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express, 2006. 14(18): p. 8224-8231.
16. Zhang, M.Q., T. Desai, and M. Ferrari, Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 1998. 19(10): p. 953-960.
17. Payne, F.P. and J.P.R. Lacey, A THEORETICAL-ANALYSIS OF SCATTERING LOSS FROM PLANAR OPTICAL WAVE-GUIDES. Optical and Quantum Electronics, 1994. 26(10): p. 977-986.
18. Leung, A., P.M. Shankar, and R. Mutharasan, Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm. Sensors and Actuators B-Chemical, 2008. 129(2): p. 716-725.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔