(3.238.130.97) 您好!臺灣時間:2021/05/18 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張正裕
研究生(外文):Cheng-Yu Chang
論文名稱:飛秒激發-探測光譜在a面氮化銦薄膜的研究
論文名稱(外文):Femtosceond pump-probe spectroscopy in a-plane InN
指導教授:蔡宗儒蔡宗儒引用關係
指導教授(外文):Tsong-Ru Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:氮化銦激發-探測熱載子
外文關鍵詞:InNpump-probehot carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
我們以時解析光學激發-探測反射系統,研究a面氮化銦薄膜的載子動力學。我們利用雷射功率來改變載子濃度,觀察熱載子能量鬆弛率與熱載子濃度的關係。再者為改變波長量測,觀察在固定載子濃度下,不同熱載子能量鬆弛率與熱載子能量的關係。實驗中我們觀察到熱載子能量鬆弛率與載子濃度約呈1次方的關係,因此我們推斷電子和電子的散射機制在能量鬆弛過程中佔有很大的因素。載子復合過程的實驗結果我們則發現主要是由缺陷捕抓和歐傑復合過程所支配,其缺陷復合時間各為303ps、434ps和909ps,歐傑係數各別為4.9×10-11(cm3/s)、5.4×10-11(cm3/s)及3.1×10-11(cm3/s)。在改變雷射波長的實驗量測,載子濃度8.8×1018cm-3時熱載子能量鬆弛率和熱載子能量呈0.7次方的關係。載子濃度1.4×1018cm-3時熱載子能量鬆弛率和熱載子能量呈0.6次方的關係。載子濃度2.1×1018cm-3時熱載子能量鬆弛率和熱載子能量呈0.5次方的關係且此結果與理論預測相同,然而熱載子能量鬆弛率和熱載子能量的關係下降原因還不是很清楚,因此尚無法完全解釋。
We used a femtosecond time-resolved pump and probe reflectivity measurement to investigate the carrier dynamics of a-plane indium nitride (InN). Laser power was used to modify carrier density to observe the interaction between the hot carrier relaxation rate and carrier density. Wavelength range was also altered to observe the interaction between the relaxation rate of hot carrier energy and kinetic energy in normal carrier density circumstances. In this study, the authors observed that the hot carrier relaxation rate and hot carrier density are in direct ratio to one another. Thus, it was predicted that electron-electron scattering is a crucial element in the hot carrier relaxation process. The carrier recombination process was seemingly influenced by the defect recombination process and the Auger recombination process. The defect recombination process was completed in 303ps, 434ps, and 909ps respectively; while the Auger recombination was completed in 4.9×10-11(cm3/s), 5.4×10-11(cm3/s), and 3.1×10-11(cm3/s). In the study involving the modification of the laser wavelength, the hot electron relaxation rate and hot electron energy were at a 0.7 ratio when the carrier density was at 8.8×1018cm-3; when the carrier density was at 1.4×1018cm-3, the hot electron relaxation rate and hot electron energy were at a 0.6 ratio; when the carrier density was at 2.1×1018cm-3, the hot electron relaxation rate and hot electron energy were at a 0.5 ratio. These results were similar to what was predicted theoretically; however, the reason behind the fall in the interaction between the hot energy relaxation rate and hot energy were not clear and cannot be fully accounted for.
目錄
摘要 Ι
目? ΙΙΙ
圖目次 V
表目次 VΙΙ
第一章 簡介 1
第二章 理論 4
2.1載子鬆弛過程 4
(1) 同調(Coherent)時期 4
(2) 非熱(Nonthermal)時期 4
(3) 熱載子(Hot-Carrier)時期 4
(4) 等溫(Isothermal)時期 5
2.2 載子半導體光學效應 5
2.2.1能帶填充(Bandfilling)效應 6
2.2.2能隙縮減(Bandgap renormalization)效應 7
2.2.3 自由載子吸收(Free carrier absorption)效應 8
2.3熱載子時期能量鬆弛 9
(1) 氮化銦能帶結構(Band Structure) 9
(2) 熱聲子效應(Hot Phonon Effect) 9
(3) 電子與聲子散射( Electron-Phonon Scattering) 10
(4) 電子與電子散射(E lectron- Electron Scattering) 10
2.3.1載子復合(Recombination) 14
第三章 樣品介紹 20
第四章 實驗原理及系統架構 23
4.1激發探測實驗原理 23
4.2實驗之系統架構 24
4.3雷射系統 25
4.4自相關干涉儀 25
第五章 載子鬆弛時間擬合 31
第六章 結果與討論 33
6.1變功率對a氮化銦的影響 33
6.2變波長對a氮化銦的影響 35
第七章 結論 55
參考文獻 56
[1] R. Juza, H. Hahn, and Z. Anorg, Allg. Chem. 239, 282 (1938).
[2] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992)
[3] S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part2 32, L8 (1993)
[4] 洪育良,“非極性氮化銦薄膜之磊晶成長及基礎物性研究”,國
立清華大學物理學系研究所碩士論文,中華民國九十六年七月
[5] Jagdeep Shah, “Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures” (Springer, New work, 1999)
[6] Andreas Othonos, J. Appl. Phys. 83, 1789 (1998)
[7] 洪勝富、齊正中,“時間解析激發-探測技術”,物理雙月刊,二十十卷五期,中華民國八十七年十月
[8] B. R. Bennett, R. A. Soref, and J. A. Del Alamo, IEEE J. Quantum
Electron. QE-26, 113 (1990).
[9] S. S. Prabhu, and A. S. Vengurlekar, J. Appl. Phys. 95, 7803.
[10] E. J. Yeo, T.C. Chong, and M.F. Li, J. Appl. Phys. 83, 1429 (1998)
[11] J.H. Collet, Phys. Rev. B 23, 1909 (1981)
[12] T. R. Tsai , C. F. Chang, and S. Gwo, Appl. Phys. Lett. 90, 252111 (2007)
[13] M. D. Yang, Y. W. Liu, and J. L. Shen, J. Appl. Phys. 105, 013526
(2009)
[14] J. Shah, Phys. Rev. B 10, 3697 (1974)
[15] J. Shah, Phys. Rev. Lett. 22, 1304 (1969)
[16] Jeff. F. Young, Ting Gong, and J. Kelly, Semicond. Sci. Technol. 9,
465-467 (1994)
[17] Jeff. F. Young, Ting Gong, and J. Kelly, Phys. Rev. B 50, 4 (1994)
[18] D. W. Snoke, Phys. Rev. B 50, 11583 (1994)
[19] D. W. Snoke, Phys. Rev. B 47, 13346 (1992)
[20] J. A. Kash, Phys. Rev. B 40, 5 (1989)
[21] J. A. Kash, Phys. Rev. B 51, 4680 (1989)
[22] D. C. Look, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 258 (2002)
[23] A. Haug, Solid-State Electron. 21, 1281 (1978)
[24] 羅志偉,“以極化飛秒光譜研究釔鋇銅氧化物之各向異性超快動力”,交通大學電子物理系,中華民國九十二年十月
[25] Fei Chen, A. N. Cartwright, Hai Lu, and William J. Schaff,
Appl. Phys. Lett. 83, 4984 (2003)
[26] D. J. Jang, G. T. Lin, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 92,
042101 (2008)
[27] T. Matsuesue, and H. Sakaki, Appl. Phys. Lett. 50, 1429 (1987)
[28] Hai Lu, William J. Schaff, and Lester F. Eastman, Appl. Phys. Lett.
82, 11 (2003)
[29] H. Ahn, Y.-P. Ku, C.-H. Chuang, C.-L. Pan, H.-W.Lin, Y.-L. Hong,
and S. Gwo, Appl. Phys. Lett. 92, 102103 (2008)
[30] Shih-Ze Sun, Yu-Chieh Wen, Shi-Hao Guol, Hong-Mao Lee,
Shangjr Gwo, and Chi-Kuang Sun, Journal of Applied 103, 123513 (2008)
[31] J. Furthmuller, P. H. Hahn, F. Fuchs, and F. Bechstedt, Phys. Rev. B
72, 205106 (2005)
[32] S. A. Lyon, Journal of Luminescence 35, 121-154 (1986)
[33] 郭志偉,“變波長時解析反射光譜於氮化銦薄膜之研究”,台灣 海洋大學光電科學研究所,中華民國九十七年七月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top