跳到主要內容

臺灣博碩士論文加值系統

(44.223.39.67) 您好!臺灣時間:2024/05/26 14:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊詩韻
研究生(外文):YANG, SHIH-YUN
論文名稱:捷運對都會區房價影響之時空差異分析
論文名稱(外文):Impacts of Subway System on Housing Prices in Different Stages and Locations of Metropolitan Area
指導教授:彭建文彭建文引用關係
指導教授(外文):PENG, CHIEN-WEN
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:不動產與城鄉環境學系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:房價捷運系統半參數法都市區位
外文關鍵詞:House PricesSubway SystemSemi-Parametric MethodLocation
相關次數:
  • 被引用被引用:14
  • 點閱點閱:5950
  • 評分評分:
  • 下載下載:650
  • 收藏至我的研究室書目清單書目收藏:3
捷運系統所帶來交通可及性的改善,透過資本化對房價帶來增值,使捷運周邊房屋隨捷運距離增加而有價格遞減的現象;然而,捷運系統對於都市內交通帶來改善的同時,不同區位間既有的交通設施將可能使捷運對房價的改善有區位上的差異;本研究有別於以往實證須先假設函數形式的參數法,採用放寬變數函數設定的半參數法進行實證,瞭解捷運對於房價影響之非線性效果;在以我國房價資料進行預測時亦發現半參數法的預測能力優於傳統的參數法,本研究分別以全線通車營運前1993~1999年與營運後2004~2007年的不同階段,分析營運前後捷運對不同都市區位間房價之影響,瞭解各區位間捷運價格曲線的變動情況,以及捷運距離與房價變動率間的關連性。根據實證結果,本研究有以下幾點結論:
一、捷運站對房價的影響範圍,就捷運全線而言,不論營運前後均為600公尺。二、捷運價格曲線確實會因區位不同而有所差異,以往認為捷運車站由於環境髒亂、噪音等外部成本,對於房價會有負面影響,實證結果中發現車站的外部成本出現在市區捷運;三、營運後捷運對郊區房價影響不顯著,可能原因在於郊區運輸系統,除了捷運外,尚須依賴轉乘工具的配合,若轉乘的運輸成本低於捷運站周邊的高房價,則民眾將較可能願意支付接駁的運輸成本、轉而購買捷運外圍較遠區域的住宅,造成捷運價格曲線在營運後趨於平緩、捷運距離對郊區市場房價影響不顯著。四、捷運房價的影響力在營運前已在市區與郊區出現,市郊則在營運後房價才隨捷運距離遞減。五、營運前的房價變動呈現下跌,可能受到總體市場不景氣與捷運施工的影響,區位抗跌性以郊區最高、市郊次之、市區最小,在營運後房價變動率市區與郊區最高、市郊次之,對一般投資者而言以郊區的捷運站具有較高的保值性。
捷運對房價的影響在不同區位與營運前後確實有所不同,捷運系統屬於大眾運輸系統的一環,因此捷運與其他運輸工具之間的關係將會影響到捷運對房價的影響,本研究認為將捷運影響分不同區位角度切入有其必要性,才能真正準確評估捷運對不動產市場的影響,也將有助於政府未來能更正確評估捷運系統的資本化效果,且可提供不動產開發商或一般民眾在進行不動產投資決策時的區位選擇參考。
Most past studies found that the subway system had very significant positive effects on house prices, and the capitalization effect will decreased as the distance with subway stations increased. However, because of the different locations and stages, the subway effects on house prices may also different. Semi-parametric model is a new function form which combines the parametric and non-parametric models. In this paper, we use semi-parametric method to measure the non-linear effects of subway system on house prices, and we find the semi-parametric method is better than parametric method in predictive house prices. We use the housing transaction data near the Red Line of Taipei Subway System when operating before 1993 and in 1999, after trading from 2004 to 2007 at different stages. Analysis of the subway impacts in different locations and stages.
According to empirical results, this study has the following conclusions: A. The range of subway station on impact of housing prices is 600 meters. B. The price curve of subway station is different due to locations, and the station in downtown may have some external costs like noise and environmental mess. C. The subway impact in country is insignificant after operating. Because the subway may work together with other transport tool in country, people would pay less transportation costs than higher housing pricse near stations. D. In downtown and country, the subway station impact housing prices before operating. The subway impact in suburb appears until after operating. E. To invertors, the subway station in suburb is better choise to invest.
In this paper, the impact of subway system on house prices is vary with different locations and stages in metropolitan area. We think to distinguish between different areas of metropolitan area is necessary, and it can accurately assess the subway system on the impact of the real estate market. It also can provide real estate developers or the general public in real estate investment decision-making reference.
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究問題與範圍 4
第三節 研究方法 5
第四節 研究架構與流程 6
第二章 文獻回顧 9
第一節 運輸成本與都市空間結構 9
第二節 捷運系統對不動產價格之影響 13
第三節 非參數與半參數法 22
第四節 小結 30
第三章 研究設計 31
第一節 研究背景 31
第二節 研究假說 38
第三節 模型設定與變數選取 42
第五節 小結 50
第四章 實證分析 51
第一節 敘述統計 51
第二節 營運前捷運對房價之影響 56
第三節 營運後捷運對房價之影響 66
第四節 實證結果討論 74
第五節 小結 77
第五章 結論與建議 79
第一節 結論 79
第二節 建議 82
參考文獻 83
附錄 87
附錄一 半參數法應用於不動產估價之準確性 87
附錄二 全體捷運線結果 ─ 800、1000、2000公尺研究範圍 99
附錄三 營運前後不同區位效果─800公尺研究範圍 102
附錄四 口試記錄與回應 105
1.台北市捷運工程局(2007),台北市政府捷運工程局網站,2007年12月12日,取自http://www.dorts. gov.tw/welcome.htm
2.台北捷運公司(2007),台北大眾捷運股份有限公司網站,2007年12月12日,取自 http://www.trtc. com.tw/c/
3.李育坤(1988),台北市地價變遷與空間分布之研究-兼論捷運系統對地價的影響,政治大學地政研究所碩士論文。
4.李朝賢(1993),區域發展規劃,台北:華泰書局。
5.林建甫(2006),醫學統計與R,2009年3月1日,取自http://web.ntpu.edu.tw/~cflin/
6.林秋瑾、黃瓊瑩,2007,特徵價格法之參數與半參數電腦輔助大量估價(CAMA)模型之研究-台北地區法拍屋住宅市場之實證分析,「住宅學報」,第16卷,第2期,第85-105頁。
7.林楨家、馮正民、胡怡鴦(2004),台北捷運藍線營運前後沿線發展變化之分析,「運輸計劃季刊」,第33卷,第2期,第361-390頁。
8.林楨家、黃志豪(2003),台北捷運營運前後沿線房地屬性特徵價格之變化,「運輸計劃季刊」,第32卷,第4期,第777-800頁。
9.洪德洋、林祖嘉(1999),台北市捷運系統與道路寬度對房屋價格影響之研究,「住宅學報」,第八期,第47-67頁。
10.張金鶚、范垂爐(1993),房地產真實交易價格之研究,「住宅學報」,第1期,第75-97頁。
11.許侶馨(1989),捷運系統對沿線地區地價影響之研究,交通大學交通運輸研究所碩士論文。
12.馮正民、曾平毅、王冠斐(1994),捷運系統對車站地區房價之影響,「都市與計劃」,第21卷,第1期,第25-45頁。
13.黃景寅(2002),非參數時間數列模型自由度之探討,國立台北大學統計學系碩士論文。
14.劉志威(2001),捷運場站對不動產市場影響範圍之研究—Anas模型的擴充,國立成功大學都市計畫研究所碩士論文。
15.蔡禮元(2003),利用交叉驗證於非參數可加性模型之選模探討,國立台北大學統計學系碩士論文。
16.Anas, A., 1982. Residential Location Markets and Urban Transportation. Academic Press, New York, ISBN 0-12057920-0.
17.Anglin, P. M. and Gencay, R., 1996. Semiparametric Estimation of a Hedonic Price Function. Journal of Applied Econometrics. 11(6), pp.633-648.
18.Armstrong, R. J. and Rodriguez, D. A., 2006. An Evaluation of the Accessibility Benefits of Commuter Rail in Eastern Massachusetts Using Spatial Hedonic Price Functions. Transportation. 33(1), pp.21-43.
19.Bae, H.-H. C., Jun, M.-J., and Park, H., 2003. The Impact of Seoul’s Subway Line 5 on Residential Property Values. Transport Policy. 10(2), pp.85-94.
20.Bajic, V., 1983. The Effect of a New Subway Line on Housing Prices in Metropolitan Toronto. Urban Studies. 20, pp.147-158.
21.Bao, H. X. H., Wan, A. T.K., 2004. On the Use of Spline Smoothing in Estimating Hedonic Housing Price Models: Empirical Evidence Using Hong Kong Data. Real Estate Economics. 32(3), pp.487-507.
22.Benjamin, J. D. and Sirmans, G. S., 1996. Mass Transportation, Apartment Rent and Property Values. Journal of Real Estate Research. 12(1), pp.1-8.
23.Bin, O., 2004. A Prediction Comparison of Housing Sales Prices by Parametric versus Semi-Parametric Regressions. Journal of Housing Economics. 13(1), pp.68-84.
24.Bowes, D.R. and Ihlanfeldt, K. R., 2001. Identifying the Impacts of Rail Transit Stations on Residential Property Values. Journal of Urban Economics. 50, pp.1-25.
25.Clapp, J. M., 2003. A Semiparametric Method for Valuing Residential Locations: Application to Automated Valuation. Journal of Real Estate Finance and Economics. 27(3), pp.303-320.
26.Clapp, J. M., 2004. A Semiparametric Method for Estimating Local House Price Indices. Real Estate Economics. 32(1), pp.127-160.
27.Clapp, J. M., Giaccotto, C., and Tiroglu, D., 1991. Housing Price Indices: Based on all Transactions Compared to Repeat Subsamples. AREUEA Journal. 19(3), pp.270-285.
28.Coffman, C. and Gregson, M. E., 1998. Railroad Development and Land Value. Journal of Real Estate Finance and Economics. 16(2), pp.191-204.
29.Coulson, N. E., 1992. Semiparametric Estimates of the Marginal Price of Floorspace. Journal of Real Estate Finance and Economics. 5(1), pp.73-83.
30.Craig, L. A., Palmquist, R. B. and Weiss, T., 1998. Transportation Improvements and Land Values in the Antebellum United States: A Hedonic Approach. Journal of Real Estate Finance and Economics. 16(2), pp.173-89.
31.Damm, D., Lerman, S. R., Lerner-Lam, E., and Young, J., 1980. Response of Urban Real Estate Values in Anticipation of the Washington Metro. Journal of Transport Economics and Policy. 14, pp.315-336.
32.Debrezion, G., Pels, E., and Rietveld, P., 2007. The Impact of Railway Stations on Residential and Commercial Property Value: A Meta-analysis. Journal of Real Estate Finance and Economics. 35, pp.161-180.
33.Dewess, D. N., 1976. The Effect of a Subway Improvement on Residential Property Values in Toronto. Journal of Urban Economics. 3, pp.357-369.
34.DiPasquale, D. and Wheaton, W., 1996. Urban Economics and Real Estate Market. UA. Prentice Hall, pp.36-51.
35.Du, H. and Mulley, C., 2007. The Short-Term Land Value Impacts of Urban Rail Transit: Quantitative Evidence from Sunderland, UK. Land Use Policy. 24(1), pp.223-233.
36.Gatzlaff, D. H. and Smith, M. T., 1993. The Impact of the Miami Metrorail on Value of Residences Near Station Locations. Land Economics. 69, pp.54-66.
37.Gençay, R. and Yang, X., 1996. A Forecast Comparison of Residential Housing Prices by Parametric versus Semiparametric Conditional Mean Estimators. Economics Letters. 52(2), pp.129-135.
38.Hastie, T. J. and Tibshirani, R. J., 1990. Generalized Additive Models. New York:Chapman and Hall.
39.Lin, J.-J. and Hwang, C.-H., 2004. Analysis of Property Prices Before and After the Opening of the Taipei Subway System. The Annals of Regional Science. 38, pp.687-704.
40.Mason, C. and Quigley, J. M., 1996. Non-Parametric Hedonic Housing Prices. Housing Studies. 11(3), pp.372-385.
41.McDonald, J. F. and Osuji, C. I., 1995. The Effect of Anticipated Transportation Improvement on Residential Land Values. Regional Science and Urban Economics. 25(3), pp.261-78.
42.McMillen, D.P. and McDonald, J., 2004. Reaction of Prices to a New Rapid Transit Line:Chicago’s Midway Line, 1983-1999. Real Estate Economics. 32(3), pp.463-486.
43.Pace, R. K., 1993. Nonparametric Methods with Applications to Hedonic Models. Journal of Real Estate Finance and Economics. 7, pp.185-204.
44.Pace, R. K., 1995. Parametric, Semiparametric, and Nonparametric Estimation of Characteristic Values within Mass Assessment and Hedonic Pricing Models. Journal of Real Estate Finance and Economics. 11, pp.195-217.
45.Pavlov, A. D., 2000. Space-Varying Regression Coefficients: A Semi-Parametric Approach Applied to Real Estate Markets. Real Estate Economics. 28(2), pp.249-283.
46.Rosen, S., 1974. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. The Journal of Political Economy. 82(1), pp.34-55.
47.Speyrer, J. F. and Ragas, W. R., 1991. Housing Prices and Flood Risk: An Examination Using Spline Regression. Journal of Real Estate Finance and Economics. 4(4), pp.395-407.
48.Ullah, A., 1988. Non-Parametric Estimation of Econometric Functional. Canadian Journal of Economics. 21(3), pp.625-659.
49.Voith, R., 1991. Transportation, Sorting and House Values. Real Estate Economics. 19(2), pp.117-137.
50.Welsh, A. H., Lin, X., and Carroll, R. J., 2002. Marginal Longitudinal Nonparametric Regression: Locality and Efficiency of Spline and Kernel Methods. Journal of the American Statistical Association. 97(458), pp.482-493.
51.Wood, S. N., 2003. Thin Plate Regression Splines. J.R.Statist.Soc.B. 65(1), pp.95-114.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top