|
1. Cook, R. D. and Nachtsheim, C. J. (1982), Model Roubst,Linear-Optimal Designs, Technometrics 24,49-54. 2. Dette, H. (1990), A Generalization of D- and D1-Optimal Designs in Polynomial Regression, Ann. Statist. 18,1784-1804. 3. Dette, H. (1994), Discrimination Designs for Polynomial Regression on Compact Intervals. Ann. Statist. 22,890-903. 4. Dette, H. and Studden, W. J. (1997), The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Wiley, New York. 5. Lau, T. S. (1983), Theory of Canonical Moments and Its Application in Polynomial Regression I and II, Technical Reports 83-23 and 83-24, Department of Statistics, Purdue University. 6. Lau, T. S. (1988), D-Optimal Designs on the Unit q-Ball,J. Statist. Plann. Inference 19,299-315. 7. Lau, T. S. and Studden, W. J . (1985), Optimal Designs for Trigonometric and Polynomial Regression Using Canonical Moments, Ann. Statist. 13,383-394. 8. Läuter, E. (1974), Experimental Design in a Class of Models, Math. Oper. Statist. 5,379-398. 9. Läuter, E. (1976), Optimal Multipurpose Designs for Regression Models, Math. Oper. Statist. 7,51-68. 10. Skibinsky, M. (1967), The Range of the (n + 1)th Moment for Distributions on [0, 1], J. Appl. Probab. 4,543-552. 11. Skibinsky, M. (1968), Extreme nth Moments for Distributions on [0,1] and the Inverse of a Moment Space Map, J. Appl. Probab. 5,693-701. 12. Skibinsky, M. (1969), Some Striking Properties of Binomial and Beta Moments, Ann. Math. Statist. 40,1753-1764. 13. Skibinsky, M. (1986), Principal Representations and Canonical Moment Sequences for Distributions on an Interval, J. Math. Anal. Appl. 120,95-118. 14. Studden, W. J. (1980), Ds-Optimal Designs for Polynomial Regression Using Continued Fractions, Ann. Statist. 8,1132-1141. 15. Studden, W. J. (1982), Some Robust-Type D-Optimal Designs in Polynomial Regression, J. Amer. Statist. Assoc. 77,916-921.
|