跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡宜哲
研究生(外文):I-Che Tsai
論文名稱:在水底感測網路中之多重路徑繞徑協定
論文名稱(外文):A Multi-Path Routing Protocol for Underwater Sensor Networks
指導教授:陳裕賢陳裕賢引用關係莊東穎莊東穎引用關係
指導教授(外文):Yuh-Shyan ChenTong-Ying Juang
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:33
中文關鍵詞:水底感測網路多重路徑兩點拓樸傳輸傳輸延遲
外文關鍵詞:UWSNmulti-pathtwo-hop transmissionpropagation delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
資料傳輸在水底感測網路(UWSN)是一項很大的挑戰因為感測點之間的傳輸延遲相當巨大,感測點擁有的頻寬較低,高度的路徑分散和感測點的飄移。水底感測網路的環境條件限制了傳輸的能力,因此我們提出了一個有時間效率,感測點路徑連結生命長的繞徑協定(Multi-path routing protocol,MPR)在水底感測網路中。我們稱之為多重路徑繞徑協定,此協定有兩個節點的傳輸拓墣。此協定有三個階段:傳輸延遲時間資訊收集、中間點(Intermediate node)候選人的選擇、中繼點(Relay node)的選擇和中繼點的選擇。在傳輸延遲時間資訊收集階段中,來源點需要兩個節點的傳輸延遲時間的資訊來形成兩個節點的拓樸。在中間點候選人的選擇階段中,來源點利用傳輸延遲時間和位置資訊來選出中間點候選人。在中間點和中繼點選擇階段中,來源點選擇可以用最少的時槽到達中間點候選人使他成為中間點且排除兩個碰撞的中繼點成為真正的中繼點。本論文模擬部分可以顯示出MPR的傳輸延遲、吞吐量、封包傳送率、成本比VBF和HH-VBF協定效能表現上來的好。
UWSN condition restricts the deficiency transmission capability, hence, we propose a time efficient, better link life time routing protocol for UWSN, called the Multi-Path Routing (MPR) Protocol, which is two-hop transmission and no proactive message exchange. In this protocol include three phases: propagation delay collection, intermediate node candidate selection and intermediate node and relay node selection. In propagation delay collection phase, source node need to get tow-hop information to acquire propagation delay to against the node mobility problem. In intermediate node candidate selection phase, source node use propagation delay information and node position information to select candidate. In intermediate node and relay node selection phase, source use minimum time slot to decide which intermediate node is and use collision detection to select relay node. The thesis present simulations to evaluate that MPR can reduce propagation delay and consequently achieving good energy efficiency in underwater environment. At the same time, since MPR use two-hop transmission scheme thus packet delivery ratio, throughput, overhead ratio performance better than VBF and HH-VBF.
1 Introduction vi
2 Related Works 2
3 Preliminary 5
3.1 SystemModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Acoustic Channel Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Basic Idea and Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 A Multi-Path Routing Protocol 14
4.1 Propagation Delay Collection Phase . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Intermediate Candidate Node Selection Phase . . . . . . . . . . . . . . . . . . 15
4.3 Intermediate Node and Rely Node Selection Phase . . . . . . . . . . . . . . . . 18
5 Performance Analysis 23
5.1 End-to-End Delay with ocean current . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Packet Delivery Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Conclusion 30
[1] Crossbow Mica2 Datasheet.http://www.xbow.com/.
[2] M.A. Ainslie and J.G. McColm. A simplified formula for viscous and chemical absorption
in ssea water. the Acoustical Society of America, 1982.
[3] Ian F. Akyildiz, Dario Pompili, and Tommaso Melodia. The state of art in protocol
research for underwater acoustic sensor networks. ACM International Workshop on Underwater
Networks (WUWNet), 11:11–22, 2006.
[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with Guaranteed Delivery in
Ad Hoc Wireless Networks. ACM Wireless Networks, 7(6):609–616, November 2007.
[5] M.C. Domingo and R. Prior. Design and analysis of a gps-free routing protocol for
underwater wireless sensor networks in deep water.
[6] M. Erol and S. Oktug. A Localization and Routing Framework for Mobile Underwater
Sensor Networks. IEEE INFOCOM Student Workshop, pages 1–3.
[7] D. Ganesan, R. Govindan, , S. Shenker, and D. Estrin. Highly-resilient, energy efficient
multipath routing in wireless sensor networks. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(4):11–25, 2001.
[8] S. Gopi, G. Kannan, D. Chander, S. N. Merchant, and U. B. Desai. PULRP: Path
Unaware Layered Routing Protocol for Underwater Sensor Networks. IEEE International
Conference on Communications (ICC), pages 3141–3145, May 2008.
[9] John Heidemann, Yuan Li, Affan Syed, Jack Wills, and Wei Ye. Underwater sensor
networkingResearch Challenges and potential Applications. USC/ISI Tech. Rep., pages
ISI–TR–2005–603, 2005.
[10] Albert F. Harris III, Milica Stojanovic, Sandipa Singh, and Mark Johnson. When underwater
acoustic nodes should sleep with one eye open: idle-time power management
in underwater sensor networks. ACM International Conference on Underwater Networks(
WUWNet), pages 105–108, September 2006.
[11] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Optimized
Link State Routing Protocol for Ad Hoc Networks. IEEE INMIC, pages 62–68,
Dec 2001.
[12] D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The Dynamic Source Routing Protocol
for Multi-Hop Wireless Ad Hoc Networks. Ad Hoc Networkings, pages 139–172, 2001.
[13] U. Lee, J. Kong, M. Gerla, J.-S. Park, and E. Magistretti. Time-critical underwater
sensor diffusion with no proactive exchanges and neglibible reactive floods. Elsevier Ad
Hoc Networks, pages 943–958, 2007.
[14] L. Liu, S. Zhou, and J.-H. Cui. Prospects and problems of wireless communication for
underwater sensor networks. wirelsee communication and mobile computing, 8(11):977–
994, 2008.
[15] K.V. Mackenzie. Nine-term equation for sound speed in the oceans. Acoustical Society
of America, 70:807–812, October 1981.
[16] T. Melodia, D. Pompili, and I. F. Akyildiz. On the interdependence of Distributed
Topology Control and Geographical Routing in Ad Hoc and Sensor Networks. Selected
Areas in Communications, 23(3):520–532, March 2005.
[17] P. Xie J.-H. Cui N. C. Nicolaou, A. G. See and D. Maggiorini. Improving the Robustness
of Location-Based Routing for Underwater Sensor Networks. IEEE Oceans07, pages 1–6,
2007.
[18] V. NAUMOV, R. BAUMANN, and T. GROSS. Ocean Currents. ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pages 108–119,
Mar 2006.
[19] C. Perkins, E. Belding-Royer, and S. Das. Ad Hoc On Demand Distance Vector (AODV)
Routing. IETF RFC 3561.
[20] C. Perkins and P. Bhagwat. Highly Dynamic Destination SequencedDistance Vector
Routing (DSDV) for Mobile Computers. ACM SIGCOMM, 1994.
[21] C. Lopes R. Jurdak and P. Baldi. Software acoustic modems for short range mote-based
underwater sensor networks. IEEE Oceans Asia Pacific, 7(5):837–848, 2006.
[22] W. KG Seah and H.-X Tan. Multipath virtual sink architecture for underwater sensor
networks. MTS/IEEE OCEANS2006 Asia Pacific Conference, pages 16–19, May 2006.
[23] M. Stojanovic. On the Relationship Between Capacity and Distance in an Underwater
Acoustic Communication Channel. ACM International Workshop on Underwater Networks
(WUWNet), pages 41–47, September 2006.
[24] A. Tsirigos and Z. J. Haas. Multipath routing in the presence of frequent topological
changes. EEE Commun. Mag., 19(11), Nov. 2001.
[25] P. Xie, J.-H. Cui, and L. Lao. VBF: Vector-Based Forwarding Protocol for Underwater
Sensor Networks. IEEE IFIP Networking, 4:228–235, May 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top