跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:卓卿雄
研究生(外文):Ching-Hsiung Cho
論文名稱:一個結合頻譜移動和換手協定在感知式的3GPPLTE系統
論文名稱(外文):A Hybrid Spectrum Mobility and Handover Protocol in 3GPP Cognitive LTE Systems
指導教授:陳裕賢陳裕賢引用關係
指導教授(外文):Yuh-Shyan Chen
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:37
中文關鍵詞:認知式移動性長期演進系統軟體無線電換手
外文關鍵詞:CognitivemobilityLTEsoftware defined radio (SDR)handover
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
許多研究顯示目前固定頻譜分配的方法造成大部分閒置的頻譜資源無法被無線
裝置使用。感知無線電 (CR)是一種新的系統能夠改善目前較低的頻譜利用率,藉由
軟體定義無線電技術 (SDR)可重置的協定和頻譜資源切換的技術增進適當的頻譜存
取和分享能力。新的網路長期演進技術 (LTE)被提出,此技術中有彈性的頻寬大小配
置和頻譜靈敏性,滿足於CR 網路系統的頻譜分配架構。為了達到頻譜移動和換手的
目的,我們提出一個結合頻譜移動和換手的協定根據每個頻譜資源的普瓦松機率分佈
並考慮不同頻譜空洞的特性計算出每個頻譜空洞預期需要傳送的時間。計算後最短的
預期傳送時間被選擇為最適合的頻譜空洞來做為頻譜移動,並提供次要使用者選擇出
一個最合適的基地台做換手程序。模擬結果顯示我們提出的協定能夠選擇適當的頻譜
空洞並且減少頻譜移動率。
Many researches show that the current approach of fixed spectrum allocation caused the most of idle
resources being unused by other wireless devices. Cognitive Radio (CR) is the novel system that
improves the low utilization spectrum, with software-defined radio (SDR) devices of reconfigurable and
switching spectrum resources to enhance the appropriate spectrum access and sharing. The new network
technology long term evolution (LTE) systems has been proposed and this technique has highly flexible
bandwidth and spectrum agile to satisfied the CR network. For the purpose of spectrum selection and
mobility, we propose a hybrid spectrum mobility and handover protocol that based on the Pisson
distribution of spectrum resources and consider the different spectrum holes characters to compute the
expected transmission time of each spectrum hole. The minimum expected transmission time makes an
appropriate spectrum holes selection to spectrum mobility and the makes the secondary user to select the
adaptive base station to handover. Simulation results have shown that the proposed protocol is able to
select spectrum holes adaptively and reduce the spectrum mobility ratio.
1 Introduction 1
2 Related Works 4
3 Preliminaries and Basic Ideas 7
3.1 Cognitive LTE Systems architecture and System Model 7
3.2 Basic Idea and Challenges 10
4 Hybrid Spectrum Mobility and Handover Protocol 16
4.1 Phase of environment observation 16
4.2 Phase of computation and analysis 18
4.2.1 Secondary users in the non-overlapped area 19
4.2.2 Secondary users in the overlapped area 21
4.3 Phase of evaluation and transmission 23
5 Simulation Results 27
5.1 Simulation Setup 27
5.2 The expected transmission time 28
5.3 The impact of spectrum hole size 28
5.4 The comparison of layer 2 scheme 29
5.5 The comparison of layer 3 scheme 30
6 Conclusions 33
[1] ”3rd Generation Mobile Group”. http://www.3gpp.org/ .
[2] The Network Simulator NS-2., http://www.isi.edu/nsnam/ns/.
[3] 3rd Generation Partnership Project TS36.300. ”Evolved Universal Terrestrial Radio Access(E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Overall description,Release 8, v8.8.0”. March 2009.
[4] I.A. Akbar and W.H. Tranter. ”Dynamic spectrum allocation in cognitive radio using hiddenMarkovmodels: Poisson distributed case”. IEEE Southeastcon (SECON), pp. 196 - 201,March 2007.
[5] L. Bortkiewicz. Das Gesetz der kleinen Zahlen. BG Teubner, Leipzig, 1898.
[6] D. Cabric, SM Mishra, and RW Brodersen. ”Implementation issues in spectrum sensing for cognitive radios”. In Signals, Systems and Computers, 2004. Conference Record of the Thirty- Eighth Asilomar Conference on, volume 1, 2004.
[7] E. Dahlman, S. Parkvall, J. Skold, and P. Beming. 3G evolution: HSPA and LTE for mobile broadband. Academic Press, 2007.
[8] FCC. ”Docket No 03-237 Notice of inquiry and notice of proposed Rulemaking”. ET Docket, 2003.
[9] Twente Institute for Wireless and Mobile Communications. ”Enhanced UMTS Radio Access Network Extensions for NS-2 (EURANE)”. http://eurane.ti-wmc.nl/eurane/ .
[10] K. Ghaboosi, A.B. MacKenzie, L.A. DaSilva, A.S. Abdallah, and M Latva-Aho. A Channel Selection Mechanism based on Incumbent Appearance Expectation for Cognitive Networks. In IEEE Wireless Communications and Networking Conference.
[11] L. Godard, C. Moy, and J. Palicot. From a configuration management to a cognitive radio management of SDR systems. In Cognitive Radio Oriented Wireless Networks and Communications, 2006. 1st International Conference on, pages 1–5, 2006.
[12] H. Harada. Software defined radio prototype toward cognitive radio communication systems. In New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on, pages 539–547, 2005.
[13] M. Hoyhtya, S. Pollin, and A. Mammela. Performance improvement with predictive channel selection for cognitive radios. In Cognitive Radio and Advanced Spectrum Management.
[14] O. Jo and D.H. Cho. ”Efficient spectrum matching based on spectrum characteristics in cognitive radio systems”. IEEE Wireless Telecommunications Symposium (WTS), pp. 230 - 235, April 2008.
[15] T. Kamakaris, MM Buddhikot, and R. Iyer. A case for coordinated dynamic spectrum access in cellular networks. In New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on.
[16] SM Mishra, A. Sahai, and RW Brodersen. ”Cooperative sensing among cognitive radios”. In IEEE International Conference on Communications, 2006. ICC’06, volume 4, 2006.
[17] J. Mitola III and GQ Maguire Jr. ”Cognitive radio: making software radios more personal”. IEEE personal communications, 6(4):13–18, 1999.
[18] P. Pawełczak, C. Guo, R.V. Prasad, and R. Hekmat. ”Clusterbased spectrum sensing architecture for opportunistic spectrum access networks”. Delft University of Technology, Tech. Rep. IRCTR-S-004-07, Feb, 12, 2006.
[19] CE Shannon. ”A mathematical theory of communication”. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.
[20] K. Akabane; H. Shiba; M. Matsui; M. Umehira; K. Uehara. ”Performance Evaluation of Reconfigurable Processor for SDRMobile Terminals and SDR Base Station using Autonomous Adaptive Control Technology”. IEEE Information, Communications and Signal Processing(ICICS), Bangkok, Thailand, pp. :148 - 152, December 2005.
[21] T. Yucek and H. Arslan. ”Spectrum characterization for opportunistic cognitive radio systems”. IEEE Military Communication conference, MILCOM, 2006.
[22] J. Zhong. ”Cognitive Radio Cognitive Network Simulator., http://stuweb.ee.mtu.edu/ ljialian/”.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊