跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉建位
研究生(外文):Chien-Wei Liu
論文名稱:使用隱式曲面造型與體積霧呈現異重流體三維網格數據
論文名稱(外文):Visualization of 3D Density Current Movement by Implicit Surfaces Modeling with Volumetric Fog Treatment
指導教授:楊德良楊德良引用關係
指導教授(外文):Der-Liang Young
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:科學計算視覺化真實感圖形異重流隱式曲面造型元球造型體積霧噪訊紋理
外文關鍵詞:Scientific visualizationRealistic imageDensity currentImplicit surfaces modelingMetaballs modelingVolumetric fogNoise texture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電腦圖學對計算流體力學最大的助益,莫過於科學計算視覺化的應用。但現有科學視覺化圖像的擬真性通常不如三維多媒體繪圖的真實感圖形,且部分視覺化技術會受限於缺乏網格組態或節點關係而難以成像。本研究的目的是結合多媒體電腦繪圖常使用的隱式曲面造型法與三維噪訊紋理呈現的體積霧技巧,根據所需加以調整,以利於應用在計算流體力學異重流體三維網格數據的視覺化成像上。重點在於提出一種偏向擬真、視覺化的真實感圖形成像,有別於現有科學視覺化商業軟體講求的易讀性與精確性,以便運用於不具備異重流知識背景的非相關專業人士宣傳與介紹之用途。
本研究進行二維與三維固定網格間距數據的隱式曲面生成參數測試,歸納出元球法有效半徑與理想門檻值的關係式。並選擇四筆具有指標性特徵的數值資料進行實例應用,包括潰壩、二相流、水槽異重流、水庫異重流等不同數值方法生成的模擬結果。由測試的結果可知隱式曲面造型法生成的表面具有良好的幾何型體連通性,易於呈現計算流體力學模擬結果包含封閉水體的自由液面資料,或是異重流臨界輪廓的描述。且可藉由調整參數修改曲面的平滑與精緻度,藉此控制顯示效能與成像結果。同時可知體積霧技巧可以用於描述雲霧或異重流邊界等模糊物,增加細節層次以及景物的真實感。藉由噪訊紋理與景物的融合,改善傳統視覺化三維多邊形模型難以呈現模糊效果。
The most important benefit of computer graphics in the field of computational fluid dynamics is to visualize the data results from numerical computations. However, an image created by computer graphic techniques is not so realistic and some techniques can not be easily applied due to lack of mesh profile or node relationship. The purpose of this study is to apply the implicit surfaces modeling method and the volumetric-foggy rendering technique for visualizing computed data, and describing the movement of three-dimensional density current. The obtained images and animations are helpful for those who have no hydraulic background for understanding the phenomena of fluid flow.
In this study, parameters of implicit surfaces modeling method are estimated, and a regressed relation between influence radius and ideal threshold for Metaballs scalar function is also established. Four cases of applications are performed including dam-break flow, two-phase flow, density current in the flume, and the density current in the Shihmen Reservoir. The results suggest that the implicit surfaces modeling method can generate continuous surfaces describing free surface of fluid and density current. Furthermore, the smoothness of implicit surfaces and computational efficiency can be adjusted through parameters of scalar function. Volumetric fog can exhibit the object with fuzzy boundary such as cloud, fog or muddy water. Blending noise texture with three-dimensional scene can improve object more realistic, especially interface between density current and clear water. The fuzzy effect of volumetric fog display is different from the polygon model in current visualization technique.
中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究方法 4
1.5 論文架構 4
第二章、文獻回顧與案例探討 6
2.1 計算流體力學視覺化研究進展 6
2.2 計算流體力學視覺化技術分類 7
2.2.1 純量場 7
2.2.2 向量場 8
2.3 隱式曲面造型 9
2.4 體積霧 10
2.5 商業軟體與案例探討 11
2.5.1 科學計算視覺化商業軟體 12
2.5.2 科學視覺化在異重流成像的應用 14
2.5.3 相關研究計畫案例 17
第三章、理論基礎與研究流程 22
3.1 三維圖形顯示 22
3.1.1三維幾何轉換 23
3.1.2 正交投影與透視投影 26
3.1.3 光照明模式 32
3.2 科學計算視覺化 34
3.2.1 科學資料基本表示法 34
3.2.2 基於體素的面著色法 35
3.2.3 色彩空間轉換 37
3.3 隱式曲面造型 39
3.3.1 元球造型法 40
3.4 體積霧 41
3.4.1 噪訊紋理 42
3.4.2 歐拉角轉換 44
3.5 研究流程 46
第四章、理論測試與應用實例 49
4.1 研究工具 49
4.2 基本測試結果 50
4.2.1 純量函數的選擇 50
4.2.2 基本幾何測試 54
4.2.3 有效半徑與最佳門檻值測試 61
4.2.4 體積霧參數測試 70
4.3 應用實例 72
4.3.1 潰壩 74
4.3.2 二相流 80
4.3.3 水槽異重流 85
4.3.4 石門水庫異重流 92
4.4 綜合討論 99
第五章、結論與建議 105
5.1 結論 105
5.2 建議 106
參考文獻 108
附錄 115
1. Angel, E. (2006).Interactive Computer Graphics: A Top-Down Approach with OpenGL, Addison-Wesley Longman Publishing Co., Inc.
2. Barnard, R. and Ural, S. (2005). "Rendering translucency with Perlin noise." Proceedings of the 3rd international conference on Computer graphics and interactive techniques in Australasia and South East Asia. Dunedin, New Zealand, ACM.
3. Blinn, J. F. (1982). "A generalization of algebraic surface drawing." SIGGRAPH Comput. Graph. 16(3): 273.
4. Blinn, J. F. (1982). "Light reflection functions for simulation of clouds and dusty surfaces." SIGGRAPH Comput. Graph. 16(3): 21-29.
5. Bourke, P. (1997). "Implicit surfaces." from http://ozviz.wasp.uwa.edu.au/~pbourke/modelling_rendering/implicitsurf/
6. Bourke, P. (2000). "Perlin Noise and Turbulence." from http://local.wasp.uwa.edu.au/~pbourke/texture_colour/perlin/
7. Brodlie. K. (1993). "A Classification Scheme for Scientific Visualization," In: Earnshaw, R.A., Watson, D. (eds.), "Animation and Scientific Visualization: Tools and Applications." New York: Academic Press, 125-140
8. Carlbom, I. and Paciorek, J. (1978). "Planar Geometric Projections and Viewing Transformations." ACM Comput. Surv. 10(4): 465-502.
9. De Cesare, G., Anton, S. and Felix, H. (2001). "Impact of Turbidity Currents on Reservoir Sedimentation." Journal of Hydraulic Engineering 127(1): 6-16.
10. Engel, K., Hadwiger, M., Kniss, J. M., Lefohn, A. E., Salama, C. R., and Weiskopf, D. (2004). "Real-time volume graphics." ACM SIGGRAPH 2004 Course Notes. Los Angeles, CA, ACM.
11. Fuller, A. R., Krishnan, H., Mahrous, K., Hamann, B., and Joy, K. I. (2007). "Real-time procedural volumetric fire." Proceedings of the 2007 symposium on Interactive 3D graphics and games. Seattle, Washington, ACM.
12. Gardner, G. Y. (1985). "Visual simulation of clouds." SIGGRAPH Comput. Graph. 19(3): 297-304.
13. Gelberg, L., D. Kamins, Parker, D. and Stacks, J. (1990). "Visualization Techniques for Structured and Unstructured Scientific Data." SIGGRAPH 90 Course Notes on "State of the Art in Visualization".
14. Goktekin, T. G., Bargteil, A. W., and O''Brien, J. F. (2004). "A method for animating viscoelastic fluids." ACM Trans. Graph. 23(3): 463-468.
15. Haber, R.B. and McNabb, D. A. (1990), "Visualization Idioms: A Conceptual Model for Scientific Visualization Systems," In: Nielson, G.M., Schriver, B., and Rosenblum, L.J., (eds.), "Visualization in Scientific Computing," IEEE CS Press, 74-93.
16. Harris, M. J. and Lastra, A. (2001). "Real-Time Cloud Rendering." Computer Graphics Forum 20(3): 76.
17. Hill, F. S. and Kelley, S. M. (2000). "Computer Graphics Using OpenGL," Prentice Hall PTR.
18. Ho, C. and Johnsson, L. (1988). "Optimal algorithms for stable dimension permutations on Boolean cubes." Proceedings of the third conference on Hypercube concurrent computers and applications: Architecture, software, computer systems, and general issues - Volume 1. Pasadena, California, United States, ACM.
19. Hultquist, J. P. (1990). "Interactive numerical flow visualization using stream surfaces." Computing Systems in Engineering 1(2): 349.
20. Kanai, T., Ohtake, Y., Kawata, H., and Kase, K. (2006). "GPU-based rendering of sparse low-degree implicit surfaces." Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia. Kuala Lumpur, Malaysia, ACM.
21. Kang, Y., Choi, J., Cho, H., and Park, C. (2000). Fast and Stable Animation of Cloth with an Approximated Implicit Method. Proceedings of the International Conference on Computer Graphics, IEEE Computer Society.
22. Kenwright, D. N. and Mallinson, G. D. (1992). "A 3-D streamline tracking algorithm using dual stream functions." Proceedings of the 3rd conference on Visualization ''92. Boston, Massachusetts, IEEE Computer Society Press.
23. Lai, J. S., Lee, F. Z., Tan, Y. C., Lee, L. C., Chang, W. Y., Lien, H. C. and Wu, C. H., (2007), "Measurement and simulation of turbidity current in the Tsengwen reservoir," The Third IASTED International Conference on Environmental Modelling and Simulation, Honolulu, Hawaii, USA, August 20-22.
24. Lasinski, T., Buning, P., Choi, D., Rogers, S. and Bancroft, G. (1987). "Flow visualization of CFD using graphics workstations." Computational Fluid Dynamics.
25. Levin, J. Z. (1979). "Mathematical models for determining the intersections of quadric surfaces." Journal of Computer Graphics and Image Processing 11(1): 73-87.
26. Lorensen, W. E. and Cline, H. E. (1987). "Marching cubes: A high resolution 3D surface construction algorithm." SIGGRAPH Comput. Graph. 21(4): 163-169.
27. McCormick, B. H. (1988). "Visualization in scientific computing." SIGBIO Newsl. 10(1): 15-21.
28. Murakami, S. and Ichihara, H. (1987). "On a 3d display method by metaball technique." Transactions of the Institute of Electronics, Information and Communication Engineers J70-D, 8, 1607-1615
29. Muller, M., Charypar, D., and Gross, M. (2003). "Particle-based fluid simulation for interactive applications." Proceedings of the 2003 ACM SIGGRAPH /Eurographics symposium on Computer animation. San Diego, California, Eurographics Association.
30. Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirkawa, I. and Omura, K. (1985). "Object modeling by distribution function and a method of image generation." Trans. Inst. Elect. Commun. Eng. Japan J68-D, 4, 718-725.
31. Patrikalakis, N. M., Ed. (1991). "Scientific visualization of physical phenomena," Springer-Verlag New York, Inc.
32. Perlin, K. (1985). "An image synthesizer." SIGGRAPH Comput. Graph. 19(3): 287-296.
33. Phong, B. T. (1975). "Illumination for computer generated pictures." Commun. ACM 18(6): 311-317.
34. Reeves, W. T. (1983). "Particle systems - a technique for modeling a class of fuzzy objects." SIGGRAPH Comput. Graph. 17(3): 359-375.
35. Rvachev, V. L. (1974). "Methods of logic algebra in mathematical physics," Kiev, Izdatel''stvo Naukova Dumka.
36. Schpok, J., Simons, J., Ebert, D. S., and Hansen, C. (2003). "A real-time cloud modeling, rendering, and animation system." Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation. San Diego, California, Eurographics Association.
37. Shigeta, T. and Tasaka, N., (2006), "Marker Particle Method using Triangular Finite Elements for Free Surface Flow Problems," Information 9(3): 395-402.
38. Smith, A. R. (1978). "Color gamut transform pairs." SIGGRAPH Comput. Graph. 12(3): 12-19.
39. Song, M. and Grogono, P. (2008). "A framework for dynamic deformation of uniform elastic two-layer 2D and 3D objects in OpenGL." Proceedings of the 2008 C3S2E conference. Montreal, Quebec, Canada, ACM.
40. Tatsumi, H., E. Takaoki, et al. (1990). "A new method for 3D reconstruction from serial sections by computer graphics using "meta-balls": reconstruction of "Hepatoskeletal System" formed by Ito Cells in the Cod Liver." Computers and Biomedical Research 23(1): 37.
41. van Wijk, J. J. (1993). "Implicit stream surfaces." Proceedings of the 4th conference on Visualization ''93. San Jose, California.
42. Wenzel, C. (2006). "Real-time atmospheric effects in games." ACM SIGGRAPH 2006 Courses. Boston, Massachusetts, ACM.
43. Whitted, T. (1980). "An improved illumination model for shaded display." Commun. ACM 23(6): 343-349.
44. Wyvill, B., McPheeters, C., Wyvill, G. (1986). "Animating Soft Objects." The Visual Computer 4.
45. Wyvill, G. (1986). "Data structure for soft objects." The Visual computer 2(4): 227.
46. Zucker, M. (2001). "The Perlin noise math FAQ." from http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html
47. 王逸帆,2006,應用虛擬實境與計算流體力學於室內通風環境模擬之研究,國立台灣大學土木工程學研究所碩士學位論文。
48. 冬陽,2003,3D遊戲程式設計/基礎篇,台北,宸宇出版社。
49. 吳堅、鄭康平、任工昌,2002,用於幾何造型的隱式曲面,西北輕工業學院學報,20: 63-67。
50. 吳權威、梁仁凱,2004,Visual C++ .NET 2003入門與應用實務,台北,網奕資訊科技。
51. 李婉君,2008,以類神經網路為基礎的X3D虛擬實境模擬水庫即時操作----以石門水庫為例,國立台灣大學生物環境系統工程學研究所碩士學位論文。
52. 李淩豐、譚建榮、張謙,2004,Metaball勢函數的若干性質研究,浙江大學學報(理學版),31(4): 404-408。
53. 李德元、金其傑,1992,計算流體力學的可視化問題,第六屆全國計算流體力學學術會議論文集。
54. 洪將涵,2005,針對資料視覺化所設計之簡單及快速的種子集建構系統,國立臺灣科技大學資訊管理系碩士學位論文。
55. 唐榮錫,2005,計算機圖學Introduciton to Computer Graphics,台北,網奕資訊科技。
56. 莊勝欽,2003,工程分析後處理圖形程式之開發與應用,國立台灣大學土木工程學研究所碩士學位論文。
57. 陳詩華,2004,離散元素分析之後處理圖形程式系統開法與應用,國立台灣大學土木工程學研究所碩士學位論文。
58. 賀懷清、劉浩翰、劉金星、楊國慶,2008,一種改進的立體雲模擬方法,系統仿真學報,20(10): 2620-2623。
59. 經濟部水利署,2007,曾文水庫庫區泥砂濃度觀測系統建置暨量測研判分析計畫期末報告。
60. 經濟部水利署北區水資源局,2004,石門水庫及其集水區整治計畫,http://www.wranb.gov.tw/wranb_spring/content/facilities/facilities.asp?SN=97
61. 雷勇、魏濤、柳共青,1999,CFD可視化研究與進展,航空計算技術,29(1): 6-9。
62. 齊越、沈旭昆、段米毅、程惠琳,2002,基於Perlin噪音繪製雲的方法,系統仿真學報,14(9): 1204-1207。
63. 劉曉波、華祖林、何國建,2004,計算流體力學的科學計算可視化研究進展,水動力學研究與進展,19(1): 120-125。
64. 賴進松、譚義績,2007,洪氾區3D地形結合淹水模擬之流場、淹水範圍及深度之展示技術研發,國科會補助提升產業技術及人才培育研究計畫成果報告。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top