跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳韻如
研究生(外文):Yun-Ju Chen
論文名稱:直接更新法應用於結構模型之更新
論文名稱(外文):New Direct Updating Method in Structural Model Updating
指導教授:楊永斌楊永斌引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:221
中文關鍵詞:直接更新法質量矩陣模型更新勁度矩陣結構模型
外文關鍵詞:direct updating methodmass matrixmodel updatingstiffness matrixstructural modeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結構模型數值分析結果與實驗量測結果相較,經常會發現兩者之間有明顯的差異。針對此一問題,本文旨在發展一套簡便的有限元素模型更新方法,即直接更新法,利用質量或勁度矩陣和模態間的正交關係,來更新結構模型的理論質量和勁度矩陣。首先假設第一模態資料可被量測得到,利用模態矩陣取代模態向量,可推導出質量和勁度矩陣的更新式。接著,假設前幾個模態的資料可被量測得到,前述單一模態更新法可被延伸至多重模態更新,可採用兩種不同的更新方式,即依序更新各個模態,或同時更新前幾個模態。不論將上述的直接更新法應用於剪力屋架、懸臂梁、連續橋樑或是拱狀結構,皆可以發現更新後結構模型所預測的振動頻率,和量測得到的前幾個模態的振動頻率是吻合的,但剩下未能得到量測資料的高模態振動頻率,則大致不受影響。最後,將本文提出的直接更新法和Lin等人(1995)提出的改善逆特徵敏感度矩陣法(IIEM)做比較,可發現本文提出的有限元素模型直接更新法,在計算過程上較簡便,在工程應用上也較適合。由於本文發展的有限元素模型更新法,僅需簡單的計算過程,相較於其他已存在的更新方法,可以更有效的應用落實於土木工程上。
Discrepancies always exist between the dynamic properties predicted by a finite element model and those measured directly from the structure. In this study, a direct updating method based on the orthogonality constraints is proposed for updating the mass and stiffness matrices of the structure first using a single set of modal data. This method hinges on replacement of the modal vector of concern by the modal matrix in computing the correction matrices to solve the problem of insufficient known conditions. Such a method is then extended to update the structural model for each of the first few sets of modal data that are experimentally made available. Two kinds of updating procedures are proposed, one is to conduct the model updating in a mode-by-mode manner and the other is in a simultaneous manner. In the numerical studies, it was demonstrated that for buildings of the shear type, the cantilever beam, continuous bridges and domes, the natural frequencies predicted by the updated model agree well with the measured ones for those modes that are experimentally made available, while the remaining modes remain basically untouched. In the end, a comparative study is performed for the proposed direct model updating method and the improved inverse eigensenstivity method (IIEM) proposed by Lin et al. (1995) for updating the mass and stiffness matrices of a structure based on the measured modal data. From the comparison study, it is demonstrated that the direct updating method presented herein is superior and more suitable for engineering applications. Since the proposed approach is simple, accurate and robust, it should be favored by engineers for practical applications.
Chapter 1 Introduction
1.1 Background 1-1
1.2 Objectives of the Dissertation 1-3
1.3 Arrangement of the Dissertation 1-5

Chapter 2 Literature Review
2.1 Introduction 2-1
2.2 Direct Updating Methods 2-2
2.3 Parameter Updating Methods 2-7
2.4 Concluding Remarks 2-14

Chapter 3 Formulation of Direct Model Updating Method
3.1 Introduction 3-1
3.1.1 Finite Element Method 3-1
3.1.2 Modal Testing 3-2
3.1.3 Model Updating 3-3
3.2 Finite Element Model Formulation 3-4
3.2.1 Formulation of Shear Building Models 3-4
3.2.2 Formulation of Beam Models 3-7
3.2.3 Formulation of Truss Models 3-13
3.3 Dynamic Analysis 3-15
3.3.1 Free Vibration 3-15
3.3.2 Orthogonality Property of the Normal Modes 3-16
3.4 Direst Model Updating Methods 3-19
3.4.1 Direct Model Updating Methods Based on Lagrange Multipliers Method 3-20
3.4.2 New Direct Model Updating Method Based on Conditions of Orthogonality 3-23
3.4.2.1 Updating of the Mass Matrix Considering Only the First Mode 3-25
3.4.2.2 Updating of the Stiffness Matrix Considering Only the First Mode 3-27
3.5 Concluding Remarks 3-29

Chapter 4 General Theory of the Direct Updating Method
4.1 Introduction 4-1
4.2 Updating in a Mode-by-Mode Manner 4-1
4.2.1 Updating of the Mass Matrix Considering Individually the First Few Modes 4-2
4.2.2 Updating of the Stiffness Matrix Considering Individually the First Few Modes 4-3
4.3 Updating in a Simultaneous Manner 4-4
4.3.1 Updating of the Stiffness Matrix Considering Simultaneously the First Few Modes 4-5
4.3.2 Updating of the Mass Matrix Considering Simultaneously the First Few Modes 4-7
4.4 Testing and Verification of the Proposed Updating Method 4-8
4.4.1 System of Two Degrees of Freedom 4-8
4.4.2 System of Three Degrees of Freedom 4-12
4.4.2.1 Model Updating Using Only the First Mode 4-13
4.4.2.2 Model Updating Using the First Few Modes 4-15
4.4.2.2.1 Updating in a Mode-by-Mode Manner 4-15
4.4.2.2.2 Updating in a Simultaneous Manner 4-16
4.5 Concluding Remarks 4-17

Chapter 5 Verification of Theories by Numerical Examples
5.1 Introduction 5-1
5.2 Building Structures 5-2
5.2.1 Three-story Shear Building 5-2
5.2.1.1 Calculation of Analytical Model 5-2
5.2.1.2 Model Updating Using Only the First Mode 5-3
5.2.1.3 Model Updating Using First Two Modes 5-4
5.2.1.3.1 Updating in a Mode-by-Mode Manner 5-5
5.2.1.3.2 Updating in a Simultaneous Manner 5-6
5.2.2 Five-story shear Building 5-6
5.2.3 Ten-story shear Building 5-10
5.3 Cantilever Beam 5-13
5.4 Bridge Structures 5-17
5.4.1 Three-spanned Uniform Cross-sectional Bridge 5-17
5.4.2 Five-spanned Uniform Cross-sectional Bridge 5-19
5.5 Dome Structures 5-20
5.5.1 Star-shaped Dome 5-21
5.5.2 Arch Dome 5-22
5.6 Concluding Remarks 5-23

Chapter 6 Comparison between Direct and Iterative Model Updating Methods
6.1 Introduction 6-1
6.2 Improved Inverse Eigensensitivity Method 6-2
6.3 Comparative Study 6-4
6.3.1 Three-story Shear Building 6-5
6.3.2 Five-story Shear Building 6-6
6.3.3 Ten-story Shear Building 6-7
6.4 Concluding Remarks 6-8

CHAPTER 7 Conclusions and Future Studies
7.1 Conclusions 7-1
7.2 Future Studies 7-5

References R-1
Adelman, H. M., and Haftka, R. T., 1986, “Sensitivity Analysis of Discrete Structural Systems,” AIAA Journal, 24(5), 823- 832.
Ahmadian, H., Gladwell, G. M. L., and Ismail F., 1997, “Parameter Selection Strategies in Finite Element Model Updating,” Journal of Vibration and Acoustics, 119(1), 37-45.
Ahmadian, H., Mottershead, J. E., and Friswell, M. I., 1998, “Regularisation Methods for Finite Element Model Updating,” Mechanical Systems and Signal Processing, 12(1), 47-64.
Allen, J. J., and Martinez, D. R., 1991, “Techniques for Implementing Structural Identification using Test Data,” AIAA Journal, 29(11), 1937-1944.
Baruch, M., 1978, “Optimization Procedure to Correct Stiffness and Flexibility Matrices Using Vibration Tests,” AIAA Journal, 16(11), 1208-1210.
Baruch, M., 1982, “Optimal Correction of Mass and Stiffness Matrices Using Measured Modes,” AIAA Journal, 20(11), 1623-1626.
Baruch, M., 1984, “Methods of Reference Basis for Identification of Linear Dynamic Structures,” AIAA Journal, 22(4), 561-564.
Baruch, M., 1997, “Modal Data Are Insufficient for Identification of Both Mass and Stiffness Matrices,” AIAA Journal, 35(11), 1797-1798.
Baruch, M., and Bar-Itzhack, I. Y., 1978, “Optimal Weighted Orthogonalization of Measured Modes,” AIAA Journal, 16(4), 346-351.
Beck, J. L., and Katafygiotis, L. S., 1998, “Updating Models and Their Uncertainties. I: Bayesian Statistical Framework,” Journal of Engineering Mechanics, 124(4), 455-461.
Berman, A., 1979a, “Comment on “Optimal Weighted Orthogonalization of Measured Modes,” AIAA Journal, 17(8), 927-928.
Berman, A., 1979b, “Mass Matrix Correction Using an Incomplete Set of Measured Modes,” AIAA Journal, 17(10), 1147-1148.
Berman, A., 1995, “Multiple Acceptable Solutions in Structural Model Improvement,” AIAA Journal, 33(5), 924-927.
Berman, A., and Nagy, E. J., 1983, “Improvement of a Large Analytical Model Using Test Data,” AIAA Journal, 21(8), 1168-1173.
Bernard, M. L., and Bronowicki, A. J., 1994, “Modal Expansion Method for Eigensensitivity with Repeated Roots,” AIAA Journal, 32(7), 1994, 1500-1506.
Bohle, K., and Fritzen, C. -P., 2003, “Results Obtained by Minimizing Natural Frequency and MAC-Value Errors of a Plate Model,” Mechanical Systems and Signal Processing, 17(1), 55-64.
Caesar, B., and Peter, J., 1987, “Direct Update of Dynamic Mathematical Models from Modal Test Data,” AIAA Journal, 25(11), 1494-1499.
Chen, J. C., and Graba, J. A., 1980, “Analytical Model Improvement Using Modal Test Results,” AIAA Journal, 18(6), 684-690.
Chen, J. C., Pertti, L. F., and Garba, J. A., 1987, “Spacecraft Model Improvement by Modal Test Results,” Journal of Spacecraft and Rockets, 24(1), 90-94.
Chen, J. C., and Wada, B. K., 1975, “Criteria for Analysis-Test Correlation of Structural Dynamic Systems,” Journal of Applied Mechanics, 24(2), 471-477.
Chen, J. C., and Wada, B. K., 1977, “Matrix Perturbation for Structural Dynamic Analysis,” Journal of Applied Mechanics, 15(8), 1095-1100.
Collins, J. D., Hart, G. C., Hasselman, T. K., and Kennedy, B., 1974, “Statistical Identification of Structures,” AIAA Journal, 12(2), 185-190.
Dailey, R. L., 1989, “Eigenvector Derivatives with Repeated Eigenvalues,” AIAA Journal, 27(4), 486-491.
Decouvreur, V., Bouillard, Ph., Deraemaeker, A., and Ladevèze, P., 2004, “Updating 2D Acoustic Models with the Constitutive Relation Error,” Journal of Sound and Vibration, 278(4-5), 773-787.
Decouvreur, V., Ladevèze, P., and Bouillard, Ph., 2008, “Updating 3D Acoustic Models with the Constitutive Relation Error Method: A Two-stage Approach for Absorbing Material Characterization,” Journal of Sound and Vibration, 310(4-5), 985-997.
Deraemaeker, A., Ladevèze, P., and Leconte, Ph., 2002, “Reduced Bases for Model Updating in Structural Dynamics Based on Constitutive Relation Error,” Computer Methods in Applied Mechanics and Engineering, 191(21–22), 2427-2444.
Deraemaeker, A., Ladevèze, P., and Loch, S. Le, 2003, “Results Obtained by the CRE Updating Method Using a Plate Model,” Mechanical Systems and Signal Processing, 17(1), 47-54.
Ewins, D. J., 1984, Modal Testing: Theory and Practice, Research Studies Press, London.
Ewins, D. J., and Imregun, M., 1986, “State-of-the-art Assessment of structural Dynamic Response Analysis Methods (DYNAS),” Shock and Vibration Bulletin, 56(1), 59-90.
Farhat, C., and Hemez, F. M., 1993, “Updating Finite Element Dynamic Models using an Element-by-element Sensitivity Methodology,” AIAA Journal, 31(9), 1702-1711.
Fox, R. L., and Kapoor, M. P., 1968, “Rates of Change of Eigenvalues and Eigenvectors,” AIAA Journal, 6(12), 2426-2429.
Friswell, M. I., 1989, “The Adjustment of Structural Parameters Using a Minimum Variance Estimator,” Mechanical Systems and Signal Processing, 3(2), 143-155.
Friswell, M. I., Inman, D. J., and Pilkey, D. F., 1998, “Direct Updating of Damping and Stiffness Matrices,” AIAA Journal, 36(3), 491-493.
Friswell, M. I., and Mottershead, J. E., 1995, Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Boston.
Friswell, M. I., Mottershead, J. E., and Ahmadian, H., 1998, “Combining Subset Selection and Parameter Constraints in Model Updating,” Journal of Vibration and Acoustics, 120(4), 854-859.
Gladwell, G. M. L., and Ahmadian, H., 1995, “Generic Element Matrices Suitable for Finite Element Model Updating,” Mechanical Systems and Signal Processing, 9(6), 601-614.
Göge, D., and Link, M., 2003, “Results Obtained by Minimizing Natural Frequency and Mode Shape Errors of a Beam Model,” Mechanical Systems and Signal Processing, 17(1), 21-27.
Ha, J., Park, Yg., and Park, Ys., 2007, “Model Updating with Closed-Loop Strain Mode Shapes,” Journal of Guidance, Control, and Dynamics, 30(4), 1206-1209.
Hsu, T. W., 2005, Application of Model Updating Methods to Shear Buildings, Master Thesis, National Taiwan University, Taiwan.
Imregun, M., and Visser, W. J., 1991, “A Review of Model Updating Techniques,” The Shock and Vibration Digest, 23(1), 9-20.
Jaishi, B., and Ren, W. X., 2005, “Structural Finite Element Model Updating using Ambient Vibration Test Results,” Journal of Structural Engineering, 131(4), 617-628.
Jung, H., and Park, Y., 2005, “Model Updating Using the Closed-Loop Natural Frequency,” Journal of Guidance, Control, and Dynamics, 28(1), 20-29.
Kabe, A. M., 1985, “Stiffness Matrix Adjustment Using Mode Data,” AIAA Journal, 23(11), 1431-1436.
Kammer, D. C., 1988, “Optimum Approximation for Residual Stiffness in Linear System Identification,” AIAA Journal, 26(1), 104-112.
Kenigsbuch, R., and Halevi, Y., 1998, “Model Updating in Structural Dynamics: A Generalised Reference Basis Approach,” Mechanical Systems and Signal Processing, 12(1), 75-90.
Kiddy, J., and Pines, D., 1998, “Constrained Damage Detection Technique for Simultaneously Updating Mass and Stiffness Matrices,” AIAA Journal, 36(7), 1332-1334.
Kim, G. H., and Park, Y. S., 2008, “An Automated Parameter Selection Procedure for Finite-element Model Updating and its Applications,” Journal of Sound and Vibration, 309(3-5), 778-793.
Kim, K. O., Anderson, W. J., and Sandstorm, R. E., 1983, “Non-linear Inverse Perturbation Method in Dynamic Analysis,” AIAA Journal, 21(9), 1310-1316.
Levin, R. I., and Lieven, N. A. J., 1998, “Dynamic Finite Element Model Updating Using Simulated Annealing and Genetic Algorithms,” Mechanical Systems and Signal Processing, 12(1), 91-120.
Levin, R. I., Waters, T. P. and Lieven, N. A. J., 1998, “Required Precision and Valid Methodologies for Dynamic Finite Element Model Updating,” Journal of Vibration and Acoustics, 120(3), 733-742.
Lim, T. W., 1990, “Submatrix Approach to Stiffness Matrix Correction Using Modal Test Data,” AIAA Journal, 28(6), 1123-1130.
Lim, K. B., Junkins, J. L., and Wang, B. P., 1987, “Re-examination of Eigenvector Derivatives,” Journal of Guidance, Control, and Dynamics, 10(6), 581-587.
Lin, R. M., Lim, M. K., and Du, H., 1995, “Improved Inverse Eigensensitivity Method for Structural Analytical Model Updating,” Journal of Vibration and Acoustics, 117(2), 192-198.
Link, M., 1998, “Updating Analytical Models by Using Local and Global Parameters and Relaxed Optimisaiton Requirements,” Mechanical Systems and Signal Processing, 12(1), 7-22.
Link, M., and Friswell, M., 2003, “Working Group 1: Generation of Validated Structural Dynamic Models – Results of a Benchmark Study Utilising the GARTEUR SM-AG19 Test-Bed,” Mechanical Systems and Signal Processing, 17(1), 9-20.
Liu, Z. S., Chen, S. H., Yu, M., and Zhao, Y. Q., 1994, “Contribution of the Truncated Modes to Eigenvector Derivatives,” AIAA Journal, 32(7), 1551-1553.
Mares, C., Mottershead, J. E., and Friswell, M. I., 2003, “Results Obtained by Minimizing Natural-Frequency Errors and Using Physical Reasoning,” Mechanical Systems and Signal Processing, 17(1), 39-46.
Mills-Curran, W. C., 1988, “Calculation of Eigenvector Derivatives for Structures with Repeated Eigenvalues,” AIAA Journal, 26(7), 867-871.
Minas, C., and Imnan, D. J., 1990, “Matching Finite Element Models to Modal Data,” Journal of Vibration and Acoustics, 112(1), 84-92.
Modak, S., Kundra, T., and Nakra, B., 2002, “Comparative Study of Model Updating Methods Using Simulated Experimental Data,” Computers and Structures, 80(5-6), 437-447.
Möller, P. W., and Friberg, O., 1998, “Updating Large Finite Element Models in Structural Dynamics,” AIAA Journal, 36(10), 1861-1868.
Mottershead, J. E., and Friswell, M. I., 1993, “Model Updating in Structural Dynamics: A Survey,” Journal of Sound and Vibration, 167(2), 347-375.
Mottershead, J. E., Friswell, M. I., Ng, G. H. T., and Brandon, J. A., 1996, “Geometric Parameters for Finite Element Model Updating of Joints and Constraints,” Mechanical Systems and Signal Processing, 10(2), 171-182.
Mottershead, J. E., Mares, C., Friswell, M. I., and James, S., 2000, “Selection and Updating of Parameters for an Aluminium Space-frame Model,” Mechanical Systems and Signal Processing, 14(6), 923-944.
Nelson, R. B., 1976, “Simplified Calculation of Eigenvector Derivatives,” AIAA Journal, 14(9), 1201-1205.
Ojalvo, I. U., 1987, “Efficient Computation of Mode-Shape Derivatives for Large Dynamic Systems,” AIAA Journal, 25(10), 1386-1390.
Plaut, R. H. and Husseyin, K., 1973, “Derivatives of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems,” AIAA Journal, 11(2), 250-251.
Rogers, L. C., 1970, “Derivatives of Eigenvalues and Eigenvectors,” AIAA Journal, 8(5), 943-944.
Rudisill, C. S., 1974, “Derivatives of Eigenvalues and Eigenvectors of a General Matrix,” AIAA Journal, 12(5), 721-722.
Rudisill, C. S., and Chu, Y. Y., 1975, “Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors,” AIAA Journal, 13(6), 834-837.
Sidhu, J., and Ewins, D. J., 1984, “Correction of Finite Element and Modal Test Studies of a Practical Structure,” Proc. of the 2nd International Modal Analysis Conference, Orland, Florida, 756-762.
Smith, S. W., 1998, “Iterative Matrix Approximation for Model Updating,” Mechanical Systems and Signal Processing, 12(1), 187-201.
Sutter, T. R., Camarda, C. J., Walsh, J. L., and Adelman, H. M., 1988, “Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives,” AIAA Journal, 26(12), 1506-1511.
Teughels, A., Maeck, J., and Roeck, G. D., 2002, “Damage Assessment by FE Model Updating Using Damage Functions,” Computers and Structures, 80(25), 1869-1879.
Wang, B. P., 1991, “Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics,” AIAA Journal, 29(6), 1018-1020.
Wei, F. S., 1990a, “Analytical Dynamic Model Improvement Using Vibration Test Data,” AIAA Journal, 28(1), 175-177.
Wei, F. S., 1990b, “Mass and Stiffness Interaction Effects in Analytical Model Modification,” AIAA Journal, 28(9), 1686-1688.
Wei, F. S., and Zhang, D. W., 1989, “Mass Matrix Modification Using Element Correction Method,” AIAA Journal, 27(1), 119-121.
Wu, J. R., and Li, Q. S., 2004, “Finite Element Model Updating for a High-rise Structure Based on Ambient Vibration Measurements,” Engineering Structures, 26(7), 979-990.
Yu, E., Yaciroglu, E., and Wallace, J. W., 2007, “Parameter Identification of Framed Structures using an Improved Finite Element Model-updating Method—Part I: Formulation and Verification,” Earthquake Engineering and Structural Dynamics, 36(5), 619-639.
Zhang, Q., and Lallement, G., 1989, “Selective Structural Modifications: Applications to the Problems of Eigensolutions Sensitivity and Model Adjustment,” Mechanical Systems and Signal Processing, 3(1), 55-69.
Zimmerman, D. C., and Widengren, M., 1990, “Correcting Finite Element Modes using a Symmetric Eigenstructure Assignment Technique,” AIAA Journal, 28(9), 1670-1676.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top