跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊傑
研究生(外文):Chun-Chieh Chen
論文名稱:含溫度效應之二維剛架彈塑性分析
論文名稱(外文):Elastic-Plastic Analysis of Planar Frames Considering Thermal Effects
指導教授:楊永斌楊永斌引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:119
中文關鍵詞:鋼結構有限元素法火害非線性分析
外文關鍵詞:steel framesfinite element methodfire resistancenonlinear analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  鋼結構雖然具有質量輕、強度高及韌性佳等優點,在土木工程上可廣泛的應用於高層建築或大跨度橋梁等建築,但相較於其他傳統建材如鋼筋混凝土,鋼結構卻也更容易於高溫下喪失其強度,產生大量變形並降低其極限承載力,因此實有必要對於鋼結構在火害作用下之力學行為作更深入的了解。
  本文希望藉由有限元素法探討平面構架在溫度效應下之非線性行為,首先以更新式拉格蘭治推演法(Updated Lagrangian Formulation)推導二維梁元素在溫度效應下之增量平衡方程式,並利用零長度塑性鉸法模擬結構之彈塑性行為,另外為了考慮高溫時材料的軟化現象,採用由Eurocode 3規範所訂定的材料折減係數。經由與文獻中鋼結構火害分析資料的驗證,顯示本文所建立的數值方法的確可有效模擬結構在溫度作用下之變形行為及臨界溫度(critical temperature)。最後,透過一系列的參數分析,可了解結構束制條件的改變,或者溫度沿斷面分佈情形的不同,都會影響結構的極限強度以及最後的崩塌機構(collapse mechanism);此外,關於加載路徑以及幾何瑕疵(geometrical imperfection)等問題,也將以範例作一相關的討論。
目 錄

誌謝 I
摘要 II
目錄 III
表目錄 VII
圖目錄 VII

第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
1.3本文章節架構 5

第二章 溫度效應對材料及斷面性質的影響 8
2.1導論 8
2.2溫度效應下鋼材性質之變化 8
2.2.1熱膨脹係數 8
2.2.2彈性模數及降伏應力之折減 9
2.3基本假設 11
2.4溫度效應引致材料及斷面性質的變化 12
2.4.1材料性質之變化 12
2.4.2斷面性質之變化 13
2.5溫度效應引致之等效溫度力 14
2.6塑性斷面力 16
2.7結論 17

第三章 含溫度效應之幾何非線性分析方法 25
3.1導論 25
3.2參考狀態及符號說明 26
3.3非線性增量方程式推導 26
3.3.1應力與應變關係 27
3.3.2 狀態之應力與斷面合力 27
3.3.3由 狀態到 狀態之應力與應變增量 28
3.3.4控制方程式與邊界條件 30
3.3.5增量勁度方程式之推導 37
3.4剛體運動測試 41
3.4.1剛體運動法則 41
3.4.2以剛體運動檢測非線性元素 42
3.5含溫度效應時桿件內力之處理 44
3.6含溫度效應之幾何非線性分析程序 46
3.6.1僅考慮外加載重之分析程序 47
3.6.2僅考慮溫度效應之分析程序 49
3.6.3廣義位移控制法 51
3.7結論 53

第四章 二階彈塑性分析理論 60
4.1導論 60
4.2彈塑性分析模式 61
4.3二階彈塑性分析 62
4.3.1基本假設 62
4.3.2應力重新分配及元素勁度修正 63
4.3.3二階彈塑性分析流程 66
4.4範例分析 69
4.5結論 73

第五章 含溫度效應之二維剛架非線性分析 80
5.1導論 80
5.2增溫-加力模式之剛架行為分析 80
5.3加力-增溫模式之剛架行為分析 84
5.4加載路徑對極限強度之影響 88
5.5幾何瑕疵之影響 90

第六章 結論與展望 109
6.1結論 109
6.2建議與展望 110

附錄A 113
參考文獻 115
Ali, H. M., Senseny, P. E., and Alpert, R. L. (2004), “Lateral displacement and collapse of single-story steel frames”, Engineering structures, 26, pp. 593-607

Argyris, J. H., Boni, B., Hindenlang, U., and Kleiber, M. (1982), “Finite element analysis of two and three-dimensional elasto-plastic frames-the natural approach”, Computer Methods in Applied Mechanics and Engineering, 35, pp. 221-248

Becker, R. (2002), “Structural behavior of simple steel structures with non-uniform longitudinal temperature distributions under fire conditions”, Fire Safety Journal, 37, pp. 495-515

Cai, J., Burgess, I. W., and Plank, R. J. (2002), “Modeling of asymmetric cross-section members for fire conditions”, Journal of Construction Steel Research, 58, pp. 389-412

Chen, H., and Liew, J. Y. (2005), “Explosion and Fire Analysis of Steel Frames Using Mixed Element Approach”, Journal of Engineering Mechanics, 131(6), pp. 606-616

Chen, W. F., and Sohal, I. (1995), “Plastic Design and Second-Order Analysis of Steel Frames”, Springer-Verlag New York, Inc.

Cichon, C. (1984), “Large displacement in-plane analysis of elastic-plastic frames”, Computers & Structures, 19(5), pp. 737-745

Clarke, M. J., Bridge, R. Q., Hancock, G. J., and Trahair, N. S. (1992), “Advanced analysis of steel building frames”, Journal of Construction Steel Research, 23, pp. 1-29

Cook, N. E., and Gerstle, K. H. (1985), “Load history effects on structural members”, Journal of Structural Engineering, ASCE, 111, pp. 628-640

Corradi, L., Poogi, C., and Setti, P. (1990), “Interaction domains for steel beam-columns in fire conditions”, Journal of Constructional Steel Research, 17, pp. 217-235

Eurocode 3 Design of steel structures. Part 1.2:Structure fire design. Commission of the European Communities. Brussels. 1993

Franssen, J. M., Cooke, G. M. E., and Latham, D. J. (1995), “Numerical Simulation of a Full Scale Fire Test on a Loaded Steel Framework”, Journal of Constructional Steel Research, 35, pp. 377-408

Galvao, A. S., Goncalves, P. B., and Silveria, R. A. M. (2005), “Post-buckling behavior and imperfection sensitivity of L-frames”, International Journal of Structural and Dynamics, 5(1), pp. 19-35

Horne, M. R. (1979), Plastic Theory of Structures, 2nd ed. Pergamon Press, Oxford, England.

Iu, C. K., and Chan, S. L. (2004), “A simulation-based large deflection and inelastic analysis of steel frames under fire”, Journal of Construction Steel Research, 60, pp. 1495-1524

Iu, C. K., Chan, S. L., and Zha, X. X. (2005), “Nonlinear pre-fire and post-fire analysis of steel frames”, Engineering Structures, 27, pp. 1689-1702

Izzuddin, B. A., Song, L., Elnashai, A. S., and Dowling, P. J. (2000), “An integrated adaptive environment for fire and explosion analysis of steel frames-Part II:verification and application”, Journal of Constructional Steel Research, 53, pp. 87-111

Kassimali, A. (1983), “Large deformation analysis of elastic-plastic frames”, Journal of Structural Engineering, 109(8), pp. 1869-1886

Landesmann, A., Batista, E. M., and Drummond Alves, J. L. (2005), “Implementation of advanced analysis method for steel-framed structures under fire conditions”, Fire Safety Journal, 40, pp. 339-366

Li, G. Q., and Jiang, S. C. (1999), “Prediction to nonlinear behavior of steel frames subjected to fire”, Fire Safety Journal, 32, pp. 347-368

Liew, J. Y. R., White, D. W., and Chen, W. F. (1993), “Second-order refined plastic hinge analysis for frame design. Part I”, Journal of Structure Engineering, 119(11), pp. 3196-3216

Liew, J. Y. R., White, D. W., and Chen, W. F. (1993), “Second-order refined plastic hinge analysis for frame design. Part II”, Journal of Structure Engineering, 119(11), pp. 3217-3237

Liew, J. Y. R. (2003), “Advanced analysis and behavior of steel structure in fire”, Progress in Steel Building Structures, 5, pp. 1-8

Liew, J. Y. R. (2008), “Survivability of steel frame structures subject to blast and fire”, Journal of Constructional Steel Research, 64, pp. 854-866

Lin, T. J. (2008), “Thermal Effect on Elastic and Inelastic Responses of Steel Trusses”, Doctoral Dissertation, Civil Engineering of National Taiwan University

Ma, K. Y., and Richard Liew, J. Y. (2004), “Nonlinear Plastic Hinge Analysis of Three-Dimensional Steel Frames in Fire”, Journal of Structural Engineering, 130(7), pp. 981-990

McGuire, W. (1967), Steel Structures, Prentice-Hall, Englewood Cliffs, N.J.

Neves, I. C. (1995), “The Critical Temperature of Steel Columns with Restrained Thermal Elongation”, Fire Safety Journal, 24, pp. 211-227

Orbison, J. G., McGuire, W., and Abel, J. F. (1982), “Yield surface application in nonlinear steel frame analysis”, Computer Methods in Applied Mechanics and Engineering, 33, pp. 557-573

Proe, D. J., Bennetts, I. D., Thomas, I. R., Szeto, W. T. (1989), “Handbook of Fire Protection Materials for Structure Steel”, Australian Institute of Steel Construction, October

Rubert, A., and Schaumann, P. (1986), “Structural steel and plane frame assemblies under fire action”, Fire Safety Journal, 10, pp. 173-184

Saab, H. A., and Nethercot, D. A. (1991), “Modeling steel frame behavior under fire conditions”, Engineering Structures, 12, pp. 371-382

Skowronski, W. (1997), “Plastic load capacity and stability of frames in fire”, Engineering Structures, 19, pp. 764-771

Tan, K H., Ting, S. K., and Huang, Z. F. (2002), “Visco-elastic-plastic analysis of steel frames in fire”, Journal of Structural Engineering, 128, pp. 105-114

Toh, W. S., Fung, T. C., and Tan, K. H. (2001), “Fire resistance of steel using classical and numerical methods”, Journal of Structural Engineering, 127(7), pp. 829-838

Wang, Y. C., Lennon, T., and Moore, D. B. (1995), “The Behaviour of Steel Frames Subject to Fire”, Journal of Constructional Steel Research, 35, pp. 291-322

Wang, Y. C. (2004), “Postbuckling behavior of axially restrained and axially loaded steel columns under fire conditions”, Journal of Structural Engineering, 130, pp. 371-380

Wong, M. B., and Patterson, N. (1996), “Unit load factor method for limiting temperature analysis of steel frames with elastic buckling failure mode”, Fire Safety Journal, 27, pp. 113-122

Wong, M. B. (2001), “Elastic and plastic methods for numerical modeling of steel structures subject to fire”, Journal of Constructional Steel research, 57, pp. 1-14

Wong, M. B. (2001), “Plastic frame analysis under fire conditions”, Journal of Structural Engineering, 127, pp. 290-295

Yang, Y. B., and Chiou, H. T. (1987), “Rigid body motion test for nonlinear analysis with beam elements”, Journal of Engineering Mechanics, ASCE, 133(9), pp. 1404-1419

Yang, Y.B., and Kou, S.R. (1994), Theory and Analysis of Nonlinear Framed Structures, Prentice-Hall, Singapore.

Yang, Y. B., and Shieh, M. S. (1990), “Solution Method for Nonlinear Problems with Multiple Critical Points”, AIAA Journal, 28(12), pp. 2110-2116

Yin, Y. Z., and Wang, Y. C. (2004), “A numerical study of large deflection behavior of restrained steel beams at elevated temperatures”, Journal of Construction Steel Research, 60, pp. 1029-1047

Yin, Y. Z., and Wang, Y. C. (2005), “Analysis of catenary action in steel beams using a simplified hand calculation method, Part 1: theory and validation for uniform temperature distribution”, Journal of Construction Steel Research, 61, pp. 183-211

Zhao, J. C. (2000), “Application of the direct iteration method for non-linear analysis of steel frames in fire”, Fire Safety Journal, 35, pp. 241-255

虞兆中, 林聰悟 (1970),“剛架塑性分析之電子計算機程序計劃”, 國立臺灣大學工學院工程學刊, 14, pp. 14-20

楊順欽 (1996),“構架非線性簡易有限元素分析方法,國立台灣大學土木工程學系碩士論文”。

鄭文雅 (2001),“平面鋼構架火害分析,國立台灣大學土木工程學系碩士論文”。

邱耀正、連寬宏、蕭邦安 (2006), “鋼結構火害反應之向量有限元分析”, 固體與結構之工程計算--2006近代工程計算論壇
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊