跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖苡珊
研究生(外文):Yi-Shan Liao
論文名稱:DOTSTAR策略性觀測投落送資料對於颱風路徑模擬影響研究
論文名稱(外文):Impact of the targeted dropwindsonde data from DOTSTAR on typhoon track simulations
指導教授:吳俊傑吳俊傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:112
中文關鍵詞:投落送策略性觀測敏感區域資料同化路徑模擬
外文關鍵詞:DOTSTARdropwindsondetargeted observationdata assimilationtrack simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:187
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為增加對於颱風內部以及周圍環境大氣的觀測資料,除了有賴於觀測範圍較廣大的衛星資料外,具有能夠得到垂直解析度上較高之大氣參數的投落送亦是重要的觀測工具。台灣自2003年開始進行「侵台颱風之飛機偵查及投落送觀測實驗」,英文簡稱DOTSTAR,以取得接近台灣的颱風周圍大氣之投落送觀測資料,並且配合策略性敏感方法,以改善路徑預報與增進颱風分析研究。
DOTSTAR團隊在每一次飛行任務執行前,會參考4大性質不同的統計及動力架構之策略性敏感方法以規劃合適的觀測飛行路徑,而主要的取樣策略可分為颱風內圈與額外敏感區域兩種方式。為了探討全部、颱風內圈以及額外敏感區域等3種不同取樣方法的投落送資料對於路徑模擬的影響並得到統計分析,本研究利用MM5 3DVAR資料同化方法選取2004至2006年的DOTSTAR觀測個案進行模擬實驗與評估,並選取珊珊颱風(2006)做進一步個案之投落送資料的影響探討。此外也針對颱風內圈一半與颱風內圈四象限各1枚投落送資料的敏感性進行討論。
研究結果顯示同化全部的投落送資料在6至72小時平均能夠大幅改善路徑模擬達24%,而僅同化颱風內圈的投落送資料亦對路徑模擬有正面的改善,但僅同化額外敏感區域的投落送資料則改善路徑模擬的程度較不明顯。而僅同化颱風內圈與同化颱風內圈一半的投落送資料對於路徑模擬的結果相似;僅同化颱風內圈四象限各1枚相較於同化額外敏感區域的投落送資料更能有效改善路徑模擬。
由珊珊颱風個案的模擬則發現,僅同化額外敏感區域相較於同化颱風內圈的投落送資料更能改進路徑誤差,此結果與上述的統計分析相異。然而無論同化額外敏感區域或是颱風內圈的投落送資料皆無法反應珊珊颱風同化全部的投落送資料的後期路徑,唯有適當結合颱風內圈與額外關鍵的投落送資料才能有效的掌握此路徑特徵。
In order to increase the atmospheric observations of typhoons over the ocean region, besides the satellite data, the data from GPS (Global Positioning System) dropwindsonde lunched by the surveillance aircraft are also important. Under the support of the National Science Council (NSC) and Central Weather Bureau (CWB), the synoptic surveillance missions to improve TC track forecasts has been conducted by DOTSTAR (Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region) in the western North Pacific Ocean since 2003.
Four different sensitivity methods have been employed as the guidance to design flight routes and deployment locations of GPS dropwindsondes for the typhoon‘s synoptic surveillance in DOTSTAR.. The two main strategies of the targted observations are ‘around-storm’ and ‘extra-targeted area’. In this research, the impact of dropwindsonde data on typhoon track simulations under different observing strategies is studied. MM5 3DVAR data assimilation system is adopted to assimilate the dropwindsonde data from DOTSTAR during 2004 to 2006, and to asses the statistical impact on typhoon track simulations.
It is shown that inclusion of all dropwindsonde data in MM5 3DVAR can effectively reduce the 6 to 72-h track forecast error by about 24%. By only assimilating the around-storm dropwindsonde data, the simulation of typhoon tracks can also be improved. On the contrary, assimilating the extra-targeted dropwindsonde data shows slightly improvement of typhoon track simulation.
Typhoon Shanshan (2006) is selected for the case study. Consistent with the results based on the statistics of multiple cases, assimilating all dropwindsonde data can effectively reduce the track forecast error. Overall, the improvement of track by assimilating the extra-targeted dropwindsonde data is more significant than that by assimilating the around-storm dropwindsonde data. Moreover, the combination of around-storm and appropriate extra-targeted dropwindsonde data shows the most track forecast improvement with the northward movement in the later period.
Assimilating only half of the around-storm dropwindsonde data shows similar results to the experiments assimilating all around-storm dropwindsonde data. Comparing to the results of assimilating the extra-targeted dropwindsonde data, experiments by assimilating four of the around-storm dropwindsonde data in each quadrant can have more improvement on the track simulations.
致謝……………………………Ⅰ
摘要……………………………Ⅱ
目錄……………………………Ⅴ
圖表目錄 …………………… Ⅶ
第一章 前言………………………………………………1
1.1 研究背景…………………………………………1
1.1.1 DOTSTAR 簡介與策略性觀測……………………1
1.1.2 颱風飛機觀測發展與相關研究…………………2
1.1.3 DOTSTAR 相關研究………………………………5
1.2 研究動機與目的…………………………………7
第二章 研究資料簡介……………………………………8
2.1 投落送資料………………………………………8
2.2 個案簡介…………………………………………9
2.2.1 2004至2006年 DOTSTAR觀測個案簡介…………9
2.2.2 珊珊颱風個案簡介 ……………………………10
第三章 研究工具與實驗方法 …………………………11
3.1 數值模式簡介 ………………………………11
3.1.1 MM5模式…………………………………………11
3.1.2 MM5 3DVAR資料同化系統 ……………………14
3.2 模式設定 ………………………………………16
3.3 實驗設計 ………………………………………17
第四章 同化不同敏感區域投落送資料之模擬結果與分析……19
4.1 2004至2006年 DOTSTAR 22個個案之模擬實驗……… 19
4.1.1 2004年 DOTSTAR 10個個案之路徑模擬結果 ……… 19
4.1.2 2005年 DOTSTAR 7個個案之路徑模擬結果 ………… 21
4.1.3 2006年 DOTSTAR 5個個案之路徑模擬結果 ………… 23
4.1.4 有無同化全部的投落送資料比較 ……………………24
4.2 2004至2006年 DOTSTAR 14個含颱風內圈及額外敏感區域觀測個案模擬實驗 ……………………………………………… 26
4.2.1 2004年 DOTSTAR 6個含颱風內圈及額外敏感區域觀測個案之路徑模擬結果 ……………………………………………………26
4.2.2 2005年 DOTSTAR 3個含颱風內圈及額外敏感區域觀測個案之路徑模擬結果 ……………………………………………………27
4.2.3 2006年 DOTSTAR 5個含颱風內圈及額外敏感區域觀測個案之路徑模擬結果 ……………………………………………………28
4.2.4 颱風內圈與額外敏感區域的投落送資料比較 ………29
第五章 珊珊颱風個案探討 ……………………………………35
5.1 同化全部的投落送資料…………………………………35
5.2 同化颱風內圈的投落送資料……………………………38
5.3 同化額外敏感區域的投落送資料………………………38
5.4 同化個別額外敏感區域的投落送資料…………………40
5.5 同化颱風內圈與個別額外敏感區域的投落送資料……41
第六章 投落送資料數目的敏感性影響探討 …………………44
6.1 颱風內圈投落送資料密度的敏感性 …………………44
6.2 颱風內圈與額外敏感區域投落送資料個數的敏感性…45
第七章 結論與未來展望 ………………………………………48
7.1 綜合討論與總結 ………………………………………48
7.2 未來展望 ………………………………………………51
參考文獻 ……………………………………………………………53
圖表 …………………………………………………………………57
中央氣象局,歷史颱風資料庫。
曾忠一,1997,氣象資料同化,國立編譯館主編,渤海堂文化公司。
曾忠一,2006: 大氣科學中的反問題,國立編譯館主編出版。
吳俊傑、林博雄、林依依與葉天降,2004:「侵台颱風之GPS Dropsonde飛機偵察觀測實驗」(追風計畫)與「颱風及海洋物理及生物地球化學交互作用研究」之研究回顧。大氣科學, 32, 275-292.
吳俊傑、林博雄、周昆炫、陳占慧、陳新淦、陳得松與徐仲毅,2008:「97年颱風投落送飛機觀測」。交通部中央氣象局委託研究計畫成果報告。MOTC-CWB-97-6M-01。共87頁。
黃葳芃,2006: 投落送資料對颱風路徑模擬評估研究—康森及米雷颱風個案研究。國立臺灣大學大氣科學研究所(博士論文)。共168頁。
周婉婷,2007: DOTSTAR投落送與其他衛星觀測資料對颱風路徑模擬影響之探討—梅姬與卡努個案研究。國立臺灣大學大氣科學研究所(碩士論文)。共92頁。
Anthes, E. -Y. Hsie, and Y. H. Kuo, 1987: Description of Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR/TN-282+STR, National Center for Atmospheric Research, Boulder, CO, 66 pp.
Aberson, S. D., and J. L. Franklin, 1999: Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA gulfstream-IV Jet Aircraft. Bull. Amer. Meteor. Soc., 80, 421-427.
_____, 2002: Two years of operational hurricane synoptic surveillance. Wea. and Fore. , 17, 1101-1110.
_____, 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 1613-1628.
_____, and B. J. Etherton, 2006: Targeted and data assimilation studies during Hurricane Humberto (2001). J. Atmos. Sci., 63, 175-186.
_____, 2008: Large Forecast Degradations due to Synoptic Surveillance during the 2004 and 2005 Hurricane Seasons. Mon. Wea. Rev., 136, 3138-3150.
Barker, D. M., W. Huang,Y.-R. Guo, and A. J. Bourgeois, 2003: A three-dimensional variational (3DVAR) data assimilation system for use with MM5. NCAR Tech. Note. NCAR/TN-453 + STR, 68 pp. (Available from UCAR Communications, P.O. Box 3000, Boulder, CO, 80307, USA.)
Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897-914.
Burpee, R. W., J. L. Franklin, S. J. Lord, R. E. Tuleya, and S. D. Aberson, 1996: The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77, 925-933.
Chou, K.-H., and C.-C. Wu, 2008: Development of the typhoon initialization in a mesoscale model – Combination of the bogused vortex with the dropwindsonde data in DOTSTAR. Mon. Wea. Rev., 136, 865-879.
Dudhia, J., 1993: A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 1493-1513.
Elsberry R. L., and P. A. Harr, 2008: Tropical Cyclone Structure (TCS08) field experiment science basis, observational platform s, and strategy. ASIA-PACIFIC J. Atmos. Sci., 44, 3, 1-23
Grell, G. A., J. Dudhia and D. R. Stauffer, 1993a: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-198+STR. 117 pp
_____, G. A., 1993b: Prognostic evaluation of assumptions used by cumulus parameterization. Mon. Wea. Rev., 121, 764-787.
_____, J. Dudhia, and D. Stauffer, 1995: A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 138 pp.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.
Ide, K., P. Courtier, M. Ghil, and A. C. Lorenc, 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Met. Soc. Japan, 75, 181-189.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
Majumdar S. J., C. H. Bishop, B. J. Etherton, and Z. Toth, 2002: Adaptive sampling with the ensemble transform Kalman filter. Part II: field program implementation, Mon. Wea. Rev., 130, 1356-1369.
_____, S.D. Aberson, C. H. Bishop, R. Buizza, M. S. Peng and C. A. Reynolds, 2006: A comparison of adaptive observing guidance for Atlantic tropical cyclones, Mon. Wea. Rev., 134, 2354-2372.
Parrish, D. F. and J.C. Derber, 1992: The National Meteorological Center’s Spectral Statistical-Interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
Peng, M. S., and C. A. Reynolds, 2006: Sensitivity of tropical cyclone forecasts as revealed by singular vectors. J. Atmos. Sci., 63, 2508-2528.
Reisner, J., R. J. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storm s using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B, 1071-1107.
Väisälä, 2004: Vaisala RD93 GPS dropsonde. (Available online at http://www. vaisala .com)
Wu, C.-C., P.-H. Lin, S. Aberson, T.-C. Yeh, W.-P. Huang, K.-H. Chou, J.-S. Hong, G.-C. Lu, C.-T. Fong, K.-C. Hsu, I-I Lin, P.-L. Lin, and C.-H. Liu, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): an overview. Bull. Amer. Meteo. Soc., 86, 787-790.
_____, K.-H. Chou, Y. Wang and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
______, J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007a: Targeted observations of tropical cyclones based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611-2626.
______, K.-H. Chou, P.-H. Lin, S. D. Aberson, M. S. Peng, and T. Nakazawa, 2007b: The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR.Wea. and Fore., 22, 1157-1176.
______, S.-G. Chen, J.-H. Chen, and K.-H. Chou, 2008a: Interaction of typhoon Shanshan (2006) with the mid-latitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Mon. Wea. Rev. (in press)
______, J.-H. Chen, S. J. Majumdar, M. S. Peng, C. A. Reynolds, S. D. Aberson, R. Buizza, M. Yamaguchi, S.-G. Chen, T. Nakazawa , and K.-H. Chou, 2008b: Inter-comparison of targeted observation guidance for tropical cyclones in the north western Pacific. Mon. Wea. Rev. (Submitted)
Yamaguchi, M., T. Iriguchi, T. Nakazawa, and C.-C. Wu, 2008: An Observing system experiment for Typhoon Conson (2004) using a singular vector method and DOTSTAR data. Mon. Wea. Rev. (accepted with minor revision)
Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top