跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃守敬
研究生(外文):Shou-Ching Huang
論文名稱:組裝式供應鏈之二層級存貨監督機制
論文名稱(外文):Echelon-based Inventory Monitoring Schemes in Convergent Supply Chain
指導教授:蔣明晃蔣明晃引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工業工程學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:59
中文關鍵詞:組裝式供應鏈層級在製存貨CONWIP
外文關鍵詞:Convergent Supply ChainEchelon WIP InventoryCONWIP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
面對現今多變的市場需求與全球性的競爭,企業必須以供應鏈的角度出發進行整體規劃,才能讓產品具有競爭力。對於生產系統而言,在製存貨是有效的監督指標,在製存貨上界設定得當,可以降低生產變異之影響,進而滿足整體供應鏈達交產品給客戶的服務水準目標。組裝式供應鏈上游階段有許多成員,各成員彼此生產不同的半成品,並在不同的時間內完成。半成品之後輸入共同的下游廠商進行組裝,且在生產過程中存在有不確定性,如此複雜的特性形成管理上的困難。
有別於過往研究多針對序列式供應鏈系統,本研究考慮組裝式供應鏈上游至下游有多對一的特性,應用層級存貨觀點以及CONWIP概念,建構組裝式供應鏈在製存貨水準之監督機制。首先利用數學方式估計出供應鏈各個階段的規劃生產時間。接著以滿足目標服務水準為前提,並將生產不確定性納入,建構最小化整體在製存貨上界之二對一兩層級供應鏈模式,再擴展模式至多對一兩層級供應鏈。最後透過模式中標準化在製存貨上界與供應鏈服務水準之間的正向關係,發展模式之求解演算法。本研究利用求解模型所得到的各層級在製存貨上界作為監督指標,並經由模擬,驗證以該上界進行生產監督之有效性,得到下列結論:
(1) 藉由本研究提出之演算法,可有效得到二對一兩層級供應鏈模式中,各層級之在製存貨上界,且整體上界略小於以階段觀點求得的結果。
(2) 以層級在製存貨取代階段在製存貨作為監督上界,使整體供應鏈系統能夠以較低的在製存貨量,得到較佳的服務水準。
Confronting the variable market demand and the global competition, enterprises must do the plan based on the entire supply chain view, so they can make end products more competitive. For a production system, WIP inventory is a good index to monitor. If WIP inventory control limits of the system are set appropriately, the influence of production variations would be reduced and the target service level would be reached. The upstream stage of convergent supply chain has more then one member. They produce different semi-finished products with different finish time, and then transfer to the downstream factory to assembly. Also, there are many uncertainties during production processes. The above mentioned characters make the convergent supply chain hard to be managed.
Previous researches which mostly focus on the sequent supply chain. Differently, this research focuses on the property of convergent supply chain, that is, multiple suppliers and one assembly factory. This research also attempts to develop a supply chain monitoring scheme based on the concepts of echelon WIP inventory and CONWIP system. The first step in the proposed scheme is to decide the planned lead time of each stage. Then we take the features of uncertainties of production into consideration, and construct a two-echelon model which has two suppliers and one assembly factory. Simultaneously, under the service level constraints, this model is constructed with the goal of minimizing the echelon WIP inventory control limits of the supply chain. In addition, the model is extended to have multiple suppliers and one assembly factory. Finally, an algorithm which solves the developed model is provided by utilizing the property of the positive relationship between standardized WIP inventory control limits and supply chain service level. With the resulting echelon WIP inventory control limits from the model, the proposed monitoring scheme has been validated through the simulation. Conclusions are drawn as follows:
(1) By the algorithm, the proposed scheme can effectively derive the two-echelon WIP inventory limits, which is lower than the stage-based WIP inventory limits of the supply chain.
(2) The proposed echelon-based monitoring scheme can obtain a higher service level under the lower inventory levels.
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 6
1.4 研究架構 7
1.5 論文架構 8
第二章 文獻探討 9
2.1 供應鏈管理與組裝式供應鏈 9
2.2 生產監控指標 11
2.3 供應鏈層級存貨管理 13
2.4 小結 14
第三章 模式建構與求解 16
3.1 問題描述 16
3.2 環境描述與條件假設 17
3.3 建構組裝式供應鏈之二對一兩層級模式 19
3.3.1 符號說明 20
3.3.2 組裝式供應鏈生產特性 22
3.3.3 兩層級模式簡述 32
3.4 多對一兩層級模式推展 35
3.5 二對一兩層級模式求解 37
3.6 利用存貨上界作為監督指標 41
第四章 模式驗證及數值範例 43
4.1 模式驗證 43
4.1.1 環境參數及求解設定 43
4.1.2 模式求解 46
4.2 模擬驗證 47
4.2.1 模擬設定 47
4.2.2 模擬過程及結果 48
4.2.3 層級觀點與階段觀點監督之模擬驗證比較 50
4.3 小結 51
第五章 結論與未來研究方向 53
5.1 研究結論與貢獻 53
5.2 研究限制 54
5.3 未來研究方向 55
參考文獻 57
[1]莊貴惠, 「半導體供應鏈多層級存貨監控機制」, 國立台灣大學工業工程學研究所碩士班論文, 2005
[2]楊博鈞, 「運用CONWIP概念於半導體供應鏈多層級存貨監督機制」, 國立台灣大學工業工程學研究所碩士班論文, 2006
[3]Barahona, M., Doherty, A. C., Sznaier, M., Mabuchi, H., and Doyle, J. C., “Finite Horizon Model Reduction and the Appearance of Dissipation in Haniltonian Systems,” Proceedings of the 41st IEEE Conference on Decision and Control, 4, 4563-4568, 2002.
[4]Asmundsson, J., Rardin, R. L., and Uzsoy, R., "Tractable Nonlinear Production Planning Models for Semiconductor Wafer Fabrication Facilities," Semiconductor Manufacturing, IEEE Transactions on, vol. 19, pp. 95-111, 2006.
[5]Chen, C. Y. J., George, E. I., and Tardif, V., “A Bayesain Model of Cycle Time Prediction,” IIE Transactions, vol. 33, p. 921-930, 2001.
[6]Clark, A. J. and Scarf, H., "Optimal Policies for a Multi-Echelon Inventory Problem," Management Science, vol. 6, pp. 475-490, 1960.
[7]Clark, C. E., "The Greatest of a Finite Set of Random Variables," Operations Research, vol. 9, pp. 145-162, 1961.
[8]Ellram, L. M. and Hendrick, T. E., "Partnering Characteristics: A Dyadic Perspective," Journal of Business Logistics, vol. 16, pp. 41-64, 1995.
[9]Gavirneni, S., “Supply Chain Management at a Chip Tester Manufacturer,” The Practice of Supply Chain Management: Where Theory and Application Converge edited by Harrison, T., Lee, H., Billington, C., and Neale. J., Massachusetts: Kluwer Academic Publishers, 2003.
[10]Glassey, C. R. and Petrakian, R. G., "The Use of Bottleneck Starvation Avoidance with Queue Predictions in Shop Floor Control," Proceedings of the 21st conference on Winter simulation Washington, D.C., United States: ACM, 1989.
[11]Graves, R. J. and Milne, R. J., "A New Method for Order Release," Production Planning and Control, vol. 8, p. 332, 1997.
[12]Hazra, J., "Performance Evaluation of Closed Tree-structured Assembly Systems," IIE Transactions, vol. 28, p. 591, 1996.
[13]Heijden, M., Diks, E., and de Kok, T., "Inventory Control in Multi-echelon Divergent Systems with Random Lead Times," OR Spectrum, vol. 21, pp. 331-359, 1999.
[14]Houlihan, J. B., “Supply Chain Management,” Proceedings of the 19th International Technical Conference of the British Production and Inventory Control Society, 101-110, 1984.
[15]Johnishi, S., Ozawa, K., and Satoh, N., “Dynamic X-factor Application for Optimizing Lot Control for Agile Manufacturing,” Proceedings of the 2002 International Symposium on Semiconductor Manufacturing, Tokyo, Japan, 281-284, 2002
[16]Karmakar, U. S., “Capacity Loading and Release Planning with Work-in-process(WIP) and Leadtimes,” Journal of Manufacturing Operation Management, 2, 105-123, 1989
[17]Kingsman, B. and Hendry, L., "The Relative Contributions of Input and Output Controls on the Performance of a Workload Control System in Make-to-order Companies," Production Planning and Control, vol. 13, pp. 579-590, 2002.
[18]Koukoumialos, S. and Liberopoulos, G., "An Analytical Method for the Performance Evaluation of Echelon Kanban Control Systems," OR Spectrum, vol. 27, pp. 339-368, 2005.
[19]Lagodimos, A. G., Kok, A. G. D., and Verrijdt, J. H. C. M., "The Robustness of Multi-Echelon Service Models under Autocorrelated Demands," The Journal of the Operational Research Society, vol. 46, pp. 92-103, 1995.
[20]Lin, James T. and Chen Y. Y., "A Supply Network Planning Problem in a Multi-stage and Multi-site Environment", The 35th International Conference on Computers and Industrial Engineering, Istanbul, Turkey, 2005.
[21]Martin, D. P., "The Advantages of Using Short Cycle Time Manufacturing (SCM) Instead of Continuous Flow Manufacturing (CFM)," in Advanced Semiconductor Manufacturing Conference and Workshop, 1998 IEEE/SEMI, pp. 43-49, 1998.
[22]Ovalle, O. R. and Marquez, A. C., "Exploring the Utilization of a CONWIP System for Supply Chain Management. A Comparison with Fully Integrated Supply Chains," International Journal of Production Economics, vol. 83, pp. 195-215, 2003.
[23]Pahl, J., Voß, S., and Woodruff, D., "Production Planning with Load Dependent Lead Times," 4OR: A Quarterly Journal of Operations Research, vol. 3, pp. 257-302, 2005.
[24]Rosling, K., "Optimal Inventory Policies for Assembly Systems under Random Demands," Operations Research, vol. 37, pp. 565-579, 1989.
[25]Schmidt, C. P., and Nahmias, S., "Optimal Policy for a Two-Stage Assembly System under Random Demand," Operations Research, vol. 33, pp. 1130-1145, 1985.
[26]Schwarz, L. B. and Schrage, L., "Optimal and System Myopic Policies for Multi-Echelon Production/Inventory Assembly Systems," Management Science, vol. 21, pp. 1285-1294, 1975.
[27]Sipper, D., "JIT vs. WIP─a Trade-off Analysis," International Journal of Production Research, vol. 27, p. 903, 1989.
[28]Song, J.-S., Yano, C. A., and Lerssrisuriya, P., "Contract Assembly: Dealing with Combined Supply Lead Time and Demand Quantity Uncertainty," Manufacturing Service Operations Management, vol. 2, pp. 287-296, January 1, 2000.
[29]Spearman, M. L., "CONWIP: A Pull Alternative to Kanban," International Journal of Production Research, vol. 28, p. 879, 1990.
[30]Spearman, M.L., "An Analytic Congestion Model for Closed Production Systems with IFR Processing Times," Management Science, 37[8] 1015-1029, 1991.
[31]Srinivasa Raghavan, N. R. and Viswanadham, N., "Stochastic Models for Analysis of Supply Chain Networks," in American Control Conference, 2002. Proceedings of the 2002, pp. 4714-4719 vol.6., 2002.
[32]Stephen, C. G., and Sean, P. W., "Optimizing Strategic Safety Stock Placement in Supply Chains," Manufacturing and Service Operations Management, vol. 2, pp. 68-83, 2000.
[33]Strader, T. J., "Business-to-business Electronic Commerce and Convergent Assembly Supply Chain Management," Journal of Information Technology, vol. 14, p. 361, 1999.
[34]Supply Chain Council, “Supply Chain Operation Model v. 6.1,” 2004.
[35]Wu, Kan, "An Examination of Variability and Its Basic Properties for a Factory," Semiconductor Manufacturing, IEEE Transactions on, vol. 18, pp. 214-221, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top