跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴盈竹
研究生(外文):Ying-Chu Lai
論文名稱:果蠅去頭蓋蛋白質2調控卵母細胞的微管組成
論文名稱(外文):Drosophila decapping protein 2, dDcp2,regulates microtubule organization in the oocyte
指導教授:周子賓
指導教授(外文):Tze-Bin Chou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子與細胞生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:157
中文關鍵詞:去頭蓋蛋白質卵母細胞微管
外文關鍵詞:decapping proteinmicrotubule
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在果蠅胚胎發育的過程(oogenesis)中, 母系訊息核醣核酸 (maternal mRNA)在卵母細胞內特定位置的分布與定位對於胚胎發育扮演非常重要的角色。其中,oskar(osk)訊息核醣核酸在卵母細胞後端的定位,決定胚胎腹部與極細胞(pole cell)的發育;纖維性肌動蛋白(F-actin)與微管(microtubule) 皆參與osk訊息核醣核酸的運送和卵母細胞後端的定位。
果蠅去頭蓋蛋白質2 (Drosophila decapping protein 2,dDcp2) 已知參與調控 osk mRNA往卵母細胞後端運送的過程。在完全缺失果蠅去頭蓋蛋白質2的背景下,Osk呈現表現錯位 (mislocalized)的不正常型態,異於正常胚胎中會在後端呈現的新月狀。此外,在果蠅去頭蓋蛋白質2突變的卵母細胞中,有不正常的纖維性肌動蛋白累積與結塊狀的情形;更且卵母細胞的胞質流動(ooplasmic streaming)也產生停滯的現象。
由於母系訊息核醣核酸的運送與細胞胞質的流動是透過驅動蛋白(kinesin)在微管上的運送而產生。本論文確定,當 dDcp2 突變時卵母細胞內的微管動態結構受損且無法形成平行的微管束(microtubule bundles),而組成微管結構的單體微管蛋白 (tubulin)的表現量也因為dDcp2 突變而下降。dDcp2 可能是藉由調控微管與微管蛋白之間的動態平衡,進而影響驅動蛋白的分布與細胞內物質運送以及細胞質流的發生。
有絲分裂的初期,細胞核中的染色質開始凝聚並且中心粒往細胞的兩端移動,並延伸出許多絲狀的物質,其中一部份絲狀物就構成紡錘體。在 dDcp2 突變的胚胎中可發現染色質無法完全成功的凝聚,另外紡錘體的表現也下降或者消失;紡錘體應該執行的功能如分離染色分體以抵達細胞的兩極也都無法同步的執行。本論文證實由於dDcp2 對動態結構的微管與微管蛋白的影響,在dDcp2突變中,因此造成紡錘體的消失以及衍生的有絲分裂的變異。
根據研究,核醣核酸裂解體(Processing bodies)與特定的核醣核酸結合蛋白(RNA-binding protein)例如Staufen可沿著微管所構築的運輸軌道進行方向性的移動。另外,若破壞了微管結構也會造成裂解體重組與分布改變。根據先前我們發現裂解體中的成員可能扮演調控微管的角色,故我們研究兩者之間的相互關係。最後,證實了在果蠅的訊息核醣核酸裂解系統中的去頭蓋蛋白質1 (Drosophila decapping protein 1,dDcp1) 和dDcp2以及(Human enhancer of decapping large subunit ,dHedls/dGe-1) 附著在果蠅的S2 細胞株內的微管結構。
本文推論,dDcp2附著在微管結構上並且參予微管與微管蛋白之間組成與分解的動態平衡,導致微管動態組成受損並消失,進而影響了細胞內物質的運送以及有絲分裂的過程。
Microtubules and actin filaments are required for the selective accumulation of oskar(osk) mRNA at the posterior end in the Drosophila oocyte. Our previous research uncovered that Drosophila decapping protein 2, dDcp2, is necessary for the proper posterior location of osk mRNP complex. The posterior determinants— Osk, Staufen and Vasa display a mislocalized pattern in dDcp2 deletion mutant comparing with the posterior crescent pattern in wild type oocyte. More strikingly, an abnormal actin accumulation clumps and a halted ooplasmic streaming were found in the mid and late stage of the dDcp2 mutant oocytes.
Since microtubules dominants the localization of maternal determinants and the onset of ooplasmic streaming, we suspect that dDcp2 may modulate the intracellular microtubule network during oogenesis. This working hypothesis is supported by several observations.
First, dDcp2 mutants show a disorganization of the oocyte microtubule cytoskeleton. Comparing with wild type, dDcp2 mutants is defected in the dynamic reorientation of microtubule at stage 9. Moreover, microtubule bundles can’t form a typical parallel array during stage 10B in dDcp2de21, dDcp2RAf, and dDcp2NF mutant GLC oocytes. Microtubules are less abundant in dDcp2 mutants, showing that a key function of dDcp2 in vivo is maintenance of the microtubule cytoskeleton.
Second, α-tubulin protein expression level is reduced in dDcp2 and dGe-1/dHedls mutant larvae, respectively; similarly, the dynamic tyrosinated tubulin protein expression level is also decreased in the dDcp2 de21 mutant GLC oocytes, and this might explain the effect on the microtubule cytoskeleton.
Third, dDcp2 is required for successful completion for the early embryo development in Drosophila. The loss-of-function of dDcp2 results in defects in the proper alignment of the dynamic spindles and chromosomal motions in early embryos.
Finally, dDcp1 and dDcp2 are partially colocalized in Drosophila S2 cells. We further showed that components of processing bodies such as dDcp1, dDcp2 and dGe-1/dHedls are able to adhere to microtubule filaments.
Several findings suggest that a relationship exists between Processing bodies and microtubules. The disruption of microtubule by drug can stimulate the accumulation of P-bodies in yeast and mammalian cells, whereas the 5’-3’ exonuclease Xrn1 is able to promote the assembly of tubulin into microtubule in vitro. Further, the loss-of-function of GW182 protein can lead to the aggregation of tubulin filamentous in Drosophila embryos.
Our findings indicate that dDcp2, as a component of P-bodies, may have a specific function in remodeling microtubule organization which appears unrelated toits RNA decapping function in vegetative cells. Therefore, we suspect that in dDcp2 mutation the disruption of microtubule may in turn affect the organization of actin filament and the proper chromosome segregation during mitosis.
INTRODUCTION…………………………………………………………1
I . Drosophila oogenesis and Cytoskeleton…………………………..1
1.
Microtubules structure and organization…………………………………………..1
2.
The posttranslational modification on the tubulin…………………………………3
3.
Organization of microtubule bundles by MAPs…………………………...………4
4.
The cellular functions of microtubule in Drosophila development- Microtubule dependent transport…………………………...………………………….………..6
5.
The cellular functions of microtubule in Drosophila development- mitotic spindle formation during the early embryogenesis……………………………….………14
II . Processing bodies and decapping proteins……………….…..21
1.
The overall of mRNA degradation ………………. ……………………...…...…21
2.
The decapping proteins ……………….……………………………………....…22
III. Intracellular trafficking and dynamics of P bodies………31
1.
Processing bodies are dynamic structures ……………….………………………31
2.
The interaction between cytoskeleton and Processing bodies……………………32
IV.
Present studies on Drosophila decapping protein 2………34
1.
Drosophila decapping protein 2……………….……………………………....…34
2.
The aim of this thesis……………….………………………………………....…37
Materials and Methods……………….……………………………….38
1.
Drosophila keeping and maintenance……………….………………………..….38
2.
Germ-line clone generation……………….……………………..……………….39
3.
Whole-mount ovary antibody staining……….……………………..……...…….42
4.
Visible microtubule staining……….……………………..………………...…….43
5.
Drosophila S2 Cell culture……….……………………..………………...…..….43
6.
Fluorescence antibody staining of S2 cells……….……………………..…….…44
7.
Purification of dDcp2 in BL21(DE3)-pLysS expression system……………..….45
Results……………….………………………………. ………………………... 46
I.
dDcp2 is required for microtubule organization in the oocyte……………….…………………………………………………......46
1.
Mutation in dDcp2de21 disrupts microtubule organization in the oocyte…... 46
2.
Microtubule organization is disrupted in the dDcp2 RAf GLC oocytes……...49
3.
Microtubule organization is disrupted in the dDcp2NF mutant GLC oocytes ……………….…………………………………………………......50
4.
Microtubule organization is abolished in the dGe-1/HedlsH159mutant GLC oocytes……………….…………………………………………………......52
5.
The dDcp1-foci aggregates in dDcp2 and dGe-1/dHedls mutants is independent of the disruption of microtubule organization………………...55
II.
dDcp2 and dGe-1/dHedls are involved in maintaining tubulin pools……………….…………………………………………...57
1.
The expression level of α-tubulin protein is decreased in the dDcp2 and dGe-1/dHedls mutants……………….……………………………………..58
2.
The expression level of dynamic tubulin protein is decreased in the dDcp2de21 mutants……………….……………………….……..……………………..60
3.
The salivary gland displays a abnormal cytoskeleton structure in the dDcp2RAf homozygous mutants…………………….……..………...………61
III.
dDcp2 is required for proper cell division..………...……...…63
1.
The loss-of-function of dDcp2 reduced the microtubule organizing center
assembly…………….……………………….……..…………………….....64
2.
The loss-of-function of dDcp2 affects the proper alignment of the dynamic spindles and the chromosomal motions.……..…………….…………….....65
3.
dDcp2 BG325JΔA affects the proper behavior of mitosis …….…………….....68
IV.
Components of processing bodies are adhered to microtubule filaments in Drosophila S2 cells………….....71
1.
dDcp1 and dDcp2 are partially colocalized in Drosophila S2 cells………….....71
2.
dDcp1, dDcp2 and dGe-1/dHedls are able to anchor to microtubule filaments...72
3.
Processing bodies are dynamic structure during cell division…….…………….74
Discussion
1.
dDcp2 is required for dynamic microtubule organization and several microtubule-dependent processes including the localization of maternal determinants and the ooplasmic streaming…….………….………………….77
dDcp2 affects the localization of oskar mRNA…….………….………………...77
dDcp2 is required for microtubule organization in the oocyte….………………..79
dDcp2 is required for cytoplasmic streaming…….………….…………………...80
2.
Both dDcp2 and dGe-1/Hedls mutants disrupt the organization of microtubule cytoskeleton in the oocyte….………….……….………….….….82
3.
dDcp2 is involved in maintaining the equilibrium between microtubule filaments and tubulin pools…….………….……….………….….…….……...84
4.
P-bodies components affect Oskar posterior transport…….….….……….....89
The function of dDcp1 in Oskar posterior transport….………….….…………...89
The function of dGe-1/dHedls in Oskar transport and microtubule organzation...91
5.
Dcp2 is required for dynamic mitotic spindle formation…….….…………...92
6.
Intracellular trafficking and dynamics of P bodies…….….………………....94
Intracellular trafficking and mRNA transport…….….………………………......95
The dynamic P-bodies assembly in dDcp2 and dGe-1/dHedls mutants is independent of the disruption of microtubule organization…………………......99
Dynamics of dDcp1 and dDcp2 in the cytoplasm…….….……………………..101
Reference…….….………………………….….…………………….….……103
List of figures
Figure 1. Microtubule structure and dynamic organization…………..……….……113
Figure 2. Dynamic interaction between P-Bodies and transport mRNP Particles on the microtubule………….……….……………. ……….…………….……….………..115
Figure3. Microtubule reorganization and kinesin-dependent cytoplasmic streaming in the oocyte………….……….……………. ……….…………….……….…………116
Figure 4.The mechanism of mitotic spindle formation and mitotic spindle in early embryo………….……….……………. ……….…………….……….………….…118
Figure 5. Overall of early embryogenesis and cytoskeleton rearrangement………..120
Figure 6. Spindle morphogenesis and centrosome-directed amphiastral …………..121
Figure 7. General mRNA degradation pathway and decapping proteins …………..122
Figure 8. Four predicted transcripts of dDcp2 and alignment of Dcp2 proteins from different organisms ..…...….……………. ……….…………….……….………….124
Figure 9. Distribution of dDcp2 in the oocytes…….…………….……….………...126
Figure 10. dDcp2 colocalized with dDcp1,Me31B and dHedls….……….………...128
Figure 11. A genomic map of dDcp2 and rescued genomic fragments….………....129
Figure 12. The microtubule organization in the wild-type oocytes…….…………..131
Figure 13. Mutant in dDcp2 de21 disrupts microtubule organization in the oocytes...133
Figure 14. Microtubule organization is disrupted in the dDcp2RAf GLC oocytes….135
Figure 15. Microtubule organization is disrupted in the dDcp2 NF GLC oocytes…..137
Figure 16. Microtubule organization is abolished in the dHedlsH159 mutant GLC oocytes..…...….……………………….…………….……….……………………...139
Figure 17.The dynamic P-bodies assembly via dDcp2 and dGe-1/dHedls mutants is independent of the disruption of microtubule organization …….……….………....140
Figure 18. The  -tubulin protein expression level is decreased in the dDcp2 and dHedls mutants ..…...….……………. ……….…………….…….………………...141
Figure 19. The formation and migration of centrosomes is not affected by dDcp2de21 homozygous embryos.….……………. ……….……………..………………..........142
Figure 20. The loss-of-function of dDcp2 affects the proper alignment of the chromosomal congression……………. ……….……………..………………….....143
Figure 21. dDcp2 is required for proper cell division and dynamic spindles formation during mitosis..…...….…………….……….………….….………….….………….144
Figure 22. Abnormal mitosis can be observed in dDcp2 BG325JA  GLC egg chambers…………………………………………………145
Figure 23. dDcp1 and dDcp2 are partially colocalized in Drosophila S2 cells……46
Figure 24.Components of processing bodies are adhered to microtubule filaments in S2 cells………………………………147
Figure 25. PBs are distinct cytoplasmic entities with their number and size varying during the cell cycle………………148
Appendix………………………………………………………………149
Aizer, A., Brody, Y., Ler, L. W., Sonenberg, N., Singer, R. H., Shav-Tal, Y., 2008. The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell. 19, 4154-66.
Aizer, A., Shav-Tal, Y., 2008. Intracellular trafficking and dynamics of P bodies. Prion. 2, 131-4.
Andersen, S. S., 2000. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10, 261-7.
Anderson, P., Kedersha, N., 2006. RNA granules. J Cell Biol. 172, 803-8.
Bail, S., Kiledjian, M., 2008. DcpS, a general modulator of cap-binding protein-dependent processes? RNA Biol. 5, 216-9.
Barbee, S. A., Estes, P. S., Cziko, A. M., Hillebrand, J., Luedeman, R. A., Coller, J. M., Johnson, N., Howlett, I. C., Geng, C., Ueda, R., Brand, A. H., Newbury, S. F., Wilhelm, J. E., Levine, R. B., Nakamura, A., Parker, R., Ramaswami, M., 2006. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron. 52, 997-1009.
Belostotsky, D. A., Sieburth, L. E., 2009. Kill the messenger: mRNA decay and plant development. Curr Opin Plant Biol. 12, 96-102.
Boag, P. R., Atalay, A., Robida, S., Reinke, V., Blackwell, T. K., 2008. Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol. 182, 543-57.
Bohrmann, J., Biber, K., 1994. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy. J Cell Sci. 107 ( Pt 4), 849-58.
Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., Seraphin, B., 2000. A Sm-like protein complex that participates in mRNA degradation. Embo Journal. 19, 1661-1671.
Brendza, R. P., Serbus, L. R., Duffy, J. B., Saxton, W. M., 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science. 289, 2120-2.
Brown, J. T., Yang, X., Johnson, A. W., 2000. Inhibition of mRNA turnover in yeast by an xrn1 mutation enhances the requirement for eIF4E binding to eIF4G and for proper capping of transcripts by Ceg1p. Genetics. 155, 31-42.
Caron, J. M., Kirschner, M. W., 1986. Autoregulation of tubulin synthesis. Bioessays. 5, 211-6.
Chernov, K. G., Mechulam, A., Popova, N. V., Pastre, D., Nadezhdina, E. S., Skabkina, O. V., Shanina, N. A., Vasiliev, V. D., Tarrade, A., Melki, J., Joshi, V., Baconnais, S., Toma, F., Ovchinnikov, L. P., Curmi, P. A., 2008. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules. BMC Biochem. 9, 23.
Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A., Scholey, J. M., 2006. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys J. 90, 3966-82.
Coller, J., Parker, R., 2004. Eukaryotic mRNA decapping. Annu Rev Biochem. 73, 861-90.
Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A., Parker, R., 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. Rna-a Publication of the Rna Society. 7, 1717-1727.
Cooley, L., Theurkauf, W. E., 1994. Cytoskeletal functions during Drosophila oogenesis. Science. 266, 590-6.
Cougot, N., Babajko, S., Seraphin, B., 2004a. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol. 165, 31-40.
Cougot, N., Bhattacharyya, S. N., Tapia-Arancibia, L., Bordonne, R., Filipowicz, W., Bertrand, E., Rage, F., 2008. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci. 28, 13793-804.
Cougot, N., van Dijk, E., Babajko, S., Seraphin, B., 2004b. ''Cap-tabolism''. Trends Biochem Sci. 29, 436-44.
Dahlgaard, K., Raposo, A. A., Niccoli, T., St Johnston, D., 2007. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell. 13, 539-53.
Deshmukh, M. V., Jones, B. N., Quang-Dang, D. U., Flinders, J., Floor, S. N., Kim, C., Jemielity, J., Kalek, M., Darzynkiewicz, E., Gross, J. D., 2008. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell. 29, 324-36.
Emmons, S., Phan, H., Calley, J., Chen, W., James, B., Manseau, L., 1995. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482-94.
Eulalio, A., Behm-Ansmant, I., Izaurralde, E., 2007a. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 8, 9-22.
Eulalio, A., Behm-Ansmant, I., Schweizer, D., Izaurralde, E., 2007b. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol. 27, 3970-81.
Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S. F., Doerks, T., Dorner, S., Bork, P., Boutros, M., Izaurralde, E., 2007c. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558-70.
Eystathioy, T., Jakymiw, A., Chan, E. K., Seraphin, B., Cougot, N., Fritzler, M. J., 2003. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 9, 1171-3.
Fenger-Gron, M., Fillman, C., Norrild, B., Lykke-Andersen, J., 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 20, 905-15.
Ferraiuolo, M. A., Basak, S., Dostie, J., Murray, E. L., Schoenberg, D. R., Sonenberg, N., 2005. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol. 170, 913-24.
Fillman, C., Lykke-Andersen, J., 2005. RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol. 17, 326-31.
Fletcher, G., Rorth, P., 2007. Drosophila stathmin is required to maintain tubulin pools. Curr Biol. 17, 1067-71.
Franks, T. M., Lykke-Andersen, J., 2008. The control of mRNA decapping and P-body formation. Mol Cell. 32, 605-15.
Glotzer, J. B., Saffrich, R., Glotzer, M., Ephrussi, A., 1997. Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr Biol. 7, 326-37.
Goshima, G., Wollman, R., Goodwin, S. S., Zhang, N., Scholey, J. M., Vale, R. D., Stuurman, N., 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 316, 417-21.
Gu, M., Lima, C. D., 2005. Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol. 15, 99-106.
Hertzer, K. M., Walczak, C. E., 2008. The C-termini of tubulin and the specific geometry of tubulin substrates influence the depolymerization activity of MCAK. Cell Cycle. 7, 2727-37.
Hirokawa, N., 2006. mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci. 26, 7139-42.
Idriss, H. T., 2000a. Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil Cytoskeleton. 45, 173-84.
Idriss, H. T., 2000b. Phosphorylation of tubulin tyrosine ligase: a potential mechanism for regulation of alpha-tubulin tyrosination. Cell Motil Cytoskeleton. 46, 1-5.
Jacobson, A., 2004. Regulation of mRNA decay: decapping goes solo. Mol Cell. 15, 1-2.
Jinek, M., Eulalio, A., Lingel, A., Helms, S., Conti, E., Izaurralde, E., 2008. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA. 14, 1991-8.
Kedersha, N., Anderson, P., 2007. Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61-81.
Kedersha, N., Tisdale, S., Hickman, T., Anderson, P., 2008. Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol. 448, 521-52.
Kuntziger, T., Gavet, O., Manceau, V., Sobel, A., Bornens, M., 2001. Stathmin/Op18 phosphorylation is regulated by microtubule assembly. Mol Biol Cell. 12, 437-48.
Larimer, F. W., Hsu, C. L., Maupin, M. K., Stevens, A., 1992. Characterization of the XRN1 gene encoding a 5''-->3'' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene. 120, 51-7.
Larimer, F. W., Stevens, A., 1990. Disruption of the gene XRN1, coding for a 5''----3'' exoribonuclease, restricts yeast cell growth. Gene. 95, 85-90.
Li, Y., Song, M. G., Kiledjian, M., 2008. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol. 28, 939-48.
Lin, M. D., Fan, S. J., Hsu, W. S., Chou, T. B., 2006. Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell. 10, 601-13.
Lin, M. D., Jiao, X., Grima, D., Newbury, S. F., Kiledjian, M., Chou, T. B., 2008. Drosophila processing bodies in oogenesis. Dev Biol. 322, 276-88.
Long, R. M., McNally, M. T., 2003. mRNA decay: x (XRN1) marks the spot. Mol Cell. 11, 1126-8.
Lykke-Andersen, J., 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Molecular and Cellular Biology. 22, 8114-8121.
Lykke-Andersen, J., Wagner, E., 2005. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351-61.
Manseau, L., Calley, J., Phan, H., 1996. Profilin is required for posterior patterning of the Drosophila oocyte. Development. 122, 2109-16.
Miki, H., Setou, M., Kaneshiro, K., Hirokawa, N., 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A. 98, 7004-11.
Pachter, J. S., Yen, T. J., Cleveland, D. W., 1987. Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell. 51, 283-92.
Palacios, I. M., St Johnston, D., 2002. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development. 129, 5473-85.
Parker, R., Sheth, U., 2007. P bodies and the control of mRNA translation and degradation. Mol Cell. 25, 635-46.
Parker, R., Song, H., 2004. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 11, 121-7.
Perez-Moreno, M., Jamora, C., Fuchs, E., 2003. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 112, 535-48.
Rajyaguru, P., Parker, R., 2009. CGH-1 and the control of maternal mRNAs. Trends Cell Biol. 19, 24-8.
Aizer, A., Brody, Y., Ler, L. W., Sonenberg, N., Singer, R. H., Shav-Tal, Y., 2008. The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell. 19, 4154-66.
Aizer, A., Shav-Tal, Y., 2008. Intracellular trafficking and dynamics of P bodies. Prion. 2, 131-4.
Andersen, S. S., 2000. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol. 10, 261-7.
Anderson, P., Kedersha, N., 2006. RNA granules. J Cell Biol. 172, 803-8.
Bail, S., Kiledjian, M., 2008. DcpS, a general modulator of cap-binding protein-dependent processes? RNA Biol. 5, 216-9.
Barbee, S. A., Estes, P. S., Cziko, A. M., Hillebrand, J., Luedeman, R. A., Coller, J. M., Johnson, N., Howlett, I. C., Geng, C., Ueda, R., Brand, A. H., Newbury, S. F., Wilhelm, J. E., Levine, R. B., Nakamura, A., Parker, R., Ramaswami, M., 2006. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron. 52, 997-1009.
Belostotsky, D. A., Sieburth, L. E., 2009. Kill the messenger: mRNA decay and plant development. Curr Opin Plant Biol. 12, 96-102.
Boag, P. R., Atalay, A., Robida, S., Reinke, V., Blackwell, T. K., 2008. Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol. 182, 543-57.
Bohrmann, J., Biber, K., 1994. Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy. J Cell Sci. 107 ( Pt 4), 849-58.
Bouveret, E., Rigaut, G., Shevchenko, A., Wilm, M., Seraphin, B., 2000. A Sm-like protein complex that participates in mRNA degradation. Embo Journal. 19, 1661-1671.
Brendza, R. P., Serbus, L. R., Duffy, J. B., Saxton, W. M., 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science. 289, 2120-2.
Brown, J. T., Yang, X., Johnson, A. W., 2000. Inhibition of mRNA turnover in yeast by an xrn1 mutation enhances the requirement for eIF4E binding to eIF4G and for proper capping of transcripts by Ceg1p. Genetics. 155, 31-42.
Caron, J. M., Kirschner, M. W., 1986. Autoregulation of tubulin synthesis. Bioessays. 5, 211-6.
Chernov, K. G., Mechulam, A., Popova, N. V., Pastre, D., Nadezhdina, E. S., Skabkina, O. V., Shanina, N. A., Vasiliev, V. D., Tarrade, A., Melki, J., Joshi, V., Baconnais, S., Toma, F., Ovchinnikov, L. P., Curmi, P. A., 2008. YB-1 promotes microtubule assembly in vitro through interaction with tubulin and microtubules. BMC Biochem. 9, 23.
Civelekoglu-Scholey, G., Sharp, D. J., Mogilner, A., Scholey, J. M., 2006. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys J. 90, 3966-82.
Coller, J., Parker, R., 2004. Eukaryotic mRNA decapping. Annu Rev Biochem. 73, 861-90.
Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A., Parker, R., 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. Rna-a Publication of the Rna Society. 7, 1717-1727.
Cooley, L., Theurkauf, W. E., 1994. Cytoskeletal functions during Drosophila oogenesis. Science. 266, 590-6.
Cougot, N., Babajko, S., Seraphin, B., 2004a. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol. 165, 31-40.
Cougot, N., Bhattacharyya, S. N., Tapia-Arancibia, L., Bordonne, R., Filipowicz, W., Bertrand, E., Rage, F., 2008. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci. 28, 13793-804.
Cougot, N., van Dijk, E., Babajko, S., Seraphin, B., 2004b. ''Cap-tabolism''. Trends Biochem Sci. 29, 436-44.
Dahlgaard, K., Raposo, A. A., Niccoli, T., St Johnston, D., 2007. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte. Dev Cell. 13, 539-53.
Deshmukh, M. V., Jones, B. N., Quang-Dang, D. U., Flinders, J., Floor, S. N., Kim, C., Jemielity, J., Kalek, M., Darzynkiewicz, E., Gross, J. D., 2008. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell. 29, 324-36.
Emmons, S., Phan, H., Calley, J., Chen, W., James, B., Manseau, L., 1995. Cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes Dev. 9, 2482-94.
Eulalio, A., Behm-Ansmant, I., Izaurralde, E., 2007a. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 8, 9-22.
Eulalio, A., Behm-Ansmant, I., Schweizer, D., Izaurralde, E., 2007b. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol. 27, 3970-81.
Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S. F., Doerks, T., Dorner, S., Bork, P., Boutros, M., Izaurralde, E., 2007c. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558-70.
Eystathioy, T., Jakymiw, A., Chan, E. K., Seraphin, B., Cougot, N., Fritzler, M. J., 2003. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 9, 1171-3.
Fenger-Gron, M., Fillman, C., Norrild, B., Lykke-Andersen, J., 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 20, 905-15.
Ferraiuolo, M. A., Basak, S., Dostie, J., Murray, E. L., Schoenberg, D. R., Sonenberg, N., 2005. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol. 170, 913-24.
Fillman, C., Lykke-Andersen, J., 2005. RNA decapping inside and outside of processing bodies. Curr Opin Cell Biol. 17, 326-31.
Fletcher, G., Rorth, P., 2007. Drosophila stathmin is required to maintain tubulin pools. Curr Biol. 17, 1067-71.
Franks, T. M., Lykke-Andersen, J., 2008. The control of mRNA decapping and P-body formation. Mol Cell. 32, 605-15.
Glotzer, J. B., Saffrich, R., Glotzer, M., Ephrussi, A., 1997. Cytoplasmic flows localize injected oskar RNA in Drosophila oocytes. Curr Biol. 7, 326-37.
Goshima, G., Wollman, R., Goodwin, S. S., Zhang, N., Scholey, J. M., Vale, R. D., Stuurman, N., 2007. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science. 316, 417-21.
Gu, M., Lima, C. D., 2005. Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol. 15, 99-106.
Hertzer, K. M., Walczak, C. E., 2008. The C-termini of tubulin and the specific geometry of tubulin substrates influence the depolymerization activity of MCAK. Cell Cycle. 7, 2727-37.
Hirokawa, N., 2006. mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci. 26, 7139-42.
Idriss, H. T., 2000a. Man to trypanosome: the tubulin tyrosination/detyrosination cycle revisited. Cell Motil Cytoskeleton. 45, 173-84.
Idriss, H. T., 2000b. Phosphorylation of tubulin tyrosine ligase: a potential mechanism for regulation of alpha-tubulin tyrosination. Cell Motil Cytoskeleton. 46, 1-5.
Jacobson, A., 2004. Regulation of mRNA decay: decapping goes solo. Mol Cell. 15, 1-2.
Jinek, M., Eulalio, A., Lingel, A., Helms, S., Conti, E., Izaurralde, E., 2008. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization. RNA. 14, 1991-8.
Kedersha, N., Anderson, P., 2007. Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61-81.
Kedersha, N., Tisdale, S., Hickman, T., Anderson, P., 2008. Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol. 448, 521-52.
Kuntziger, T., Gavet, O., Manceau, V., Sobel, A., Bornens, M., 2001. Stathmin/Op18 phosphorylation is regulated by microtubule assembly. Mol Biol Cell. 12, 437-48.
Larimer, F. W., Hsu, C. L., Maupin, M. K., Stevens, A., 1992. Characterization of the XRN1 gene encoding a 5''-->3'' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. Gene. 120, 51-7.
Larimer, F. W., Stevens, A., 1990. Disruption of the gene XRN1, coding for a 5''----3'' exoribonuclease, restricts yeast cell growth. Gene. 95, 85-90.
Li, Y., Song, M. G., Kiledjian, M., 2008. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol Cell Biol. 28, 939-48.
Lin, M. D., Fan, S. J., Hsu, W. S., Chou, T. B., 2006. Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev Cell. 10, 601-13.
Lin, M. D., Jiao, X., Grima, D., Newbury, S. F., Kiledjian, M., Chou, T. B., 2008. Drosophila processing bodies in oogenesis. Dev Biol. 322, 276-88.
Long, R. M., McNally, M. T., 2003. mRNA decay: x (XRN1) marks the spot. Mol Cell. 11, 1126-8.
Lykke-Andersen, J., 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Molecular and Cellular Biology. 22, 8114-8121.
Lykke-Andersen, J., Wagner, E., 2005. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351-61.
Manseau, L., Calley, J., Phan, H., 1996. Profilin is required for posterior patterning of the Drosophila oocyte. Development. 122, 2109-16.
Miki, H., Setou, M., Kaneshiro, K., Hirokawa, N., 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A. 98, 7004-11.
Pachter, J. S., Yen, T. J., Cleveland, D. W., 1987. Autoregulation of tubulin expression is achieved through specific degradation of polysomal tubulin mRNAs. Cell. 51, 283-92.
Palacios, I. M., St Johnston, D., 2002. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development. 129, 5473-85.
Parker, R., Sheth, U., 2007. P bodies and the control of mRNA translation and degradation. Mol Cell. 25, 635-46.
Parker, R., Song, H., 2004. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 11, 121-7.
Perez-Moreno, M., Jamora, C., Fuchs, E., 2003. Sticky business: orchestrating cellular signals at adherens junctions. Cell. 112, 535-48.
Rajyaguru, P., Parker, R., 2009. CGH-1 and the control of maternal mRNAs. Trends Cell Biol. 19, 24-8.
Rosales-Nieves, A. E., Johndrow, J. E., Keller, L. C., Magie, C. R., Pinto-Santini, D. M., Parkhurst, S. M., 2006. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino. Nat Cell Biol. 8, 367-76.
Sakuno, T., Araki, Y., Ohya, Y., Kofuji, S., Takahashi, S., Hoshino, S., Katada, T., 2004. Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human. J Biochem. 136, 805-12.
Schneider, M. D., Najand, N., Chaker, S., Pare, J. M., Haskins, J., Hughes, S. C., Hobman, T. C., Locke, J., Simmonds, A. J., 2006. Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development. J Cell Biol. 174, 349-58.
Schwartz, D. C., Parker, R., 2000. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol. 20, 7933-42.
Serbus, L. R., Cha, B. J., Theurkauf, W. E., Saxton, W. M., 2005. Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development. 132, 3743-52.
She, M., Decker, C. J., Chen, N., Tumati, S., Parker, R., Song, H., 2006. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol. 13, 63-70.
She, M., Decker, C. J., Sundramurthy, K., Liu, Y., Chen, N., Parker, R., Song, H., 2004. Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat Struct Mol Biol. 11, 249-56.
She, M., Decker, C. J., Svergun, D. I., Round, A., Chen, N., Muhlrad, D., Parker, R., Song, H., 2008. Structural basis of dcp2 recognition and activation by dcp1. Mol Cell. 29, 337-49.
Sheth, U., Parker, R., 2006. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell. 125, 1095-109.
Simon, E., Camier, S., Seraphin, B., 2006. New insights into the control of mRNA decapping. Trends Biochem Sci. 31, 241-3.
Singer, R. H., 2008. Highways for mRNA transport. Cell. 134, 722-3.
Spradling, A. C., 1993. Germline cysts: communes that work. Cell. 72, 649-51.
Stevens, A., 2001. 5''-exoribonuclease 1: Xrn1. Methods Enzymol. 342, 251-9.
Sullivan, W., Theurkauf, W. E., 1995. The cytoskeleton and morphogenesis of the early Drosophila embryo. Curr Opin Cell Biol. 7, 18-22.
Sweet, T. J., Boyer, B., Hu, W. Q., Baker, K. E., Coller, J., 2007. Microtubule disruption stimulates P-body formation. Rna-a Publication of the Rna Society. 13, 493-502.
Takahashi, K., Suzuki, K., 2009. Membrane transport of WAVE2 and lamellipodia formation require Pak1 that mediates phosphorylation and recruitment of stathmin/Op18 to Pak1-WAVE2-kinesin complex. Cell Signal. 21, 695-703.
Tan, D., Asenjo, A. B., Mennella, V., Sharp, D. J., Sosa, H., 2006. Kinesin-13s form rings around microtubules. J Cell Biol. 175, 25-31.
Teixeira, D., Parker, R., 2007. Analysis of P-body assembly in Saccharomyces cerevisiae. Mol Biol Cell. 18, 2274-87.
Theurkauf, W. E., Smiley, S., Wong, M. L., Alberts, B. M., 1992. Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development. 115, 923-36.
van Dijk, E., Le Hir, H., Seraphin, B., 2003. DcpS can act in the 5''-3'' mRNA decay pathway in addition to the 3''-5'' pathway. Proc Natl Acad Sci U S A. 100, 12081-6.
van Hoof, A., Frischmeyer, P. A., Dietz, H. C., Parker, R., 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science. 295, 2262-4.
van Hoof, A., Lennertz, P., Parker, R., 2000. Yeast exosome mutants accumulate 3''-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol. 20, 441-52.
van Hoof, A., Parker, R., 1999. The exosome: a proteasome for RNA? Cell. 99, 347-50.
Walczak, C. E., Heald, R., 2008. Mechanisms of mitotic spindle assembly and function. Int Rev Cytol. 265, 111-58.
Wang, Y., Riechmann, V., 2008. Microtubule anchoring by cortical actin bundles prevents streaming of the oocyte cytoplasm. Mech Dev. 125, 142-52.
Xu, J., Yang, J. Y., Niu, Q. W., Chua, N. H., 2006. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell. 18, 3386-98.
Yang, Z., Jakymiw, A., Wood, M. R., Eystathioy, T., Rubin, R. L., Fritzler, M. J., Chan, E. K., 2004. GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci. 117, 5567-78.
Zeitelhofer, M., Karra, D., Macchi, P., Tolino, M., Thomas, S., Schwarz, M., Kiebler, M., Dahm, R., 2008. Dynamic interaction between P-bodies and transport ribonucleoprotein particles in dendrites of mature hippocampal neurons. J Neurosci. 28, 7555-62.
Zimyanin, V. L., Belaya, K., Pecreaux, J., Gilchrist, M. J., Clark, A., Davis, I., St Johnston, D., 2008. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell. 134, 843-53.
Zou, J., Hallen, M. A., Yankel, C. D., Endow, S. A., 2008. A microtubule-destabilizing kinesin motor regulates spindle length and anchoring in oocytes. J Cell Biol. 180, 459-66.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top