跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊孝
研究生(外文):Chun-Hsiao Chen
論文名稱:以電漿輔助化學氣相沉積儀成長奈米碳管應用於染料敏化太陽能電池之反電極
論文名稱(外文):Carbon Nanotubes Growth by PECVD as Counter Electrode for Dye-Sensitized Solar Cells
指導教授:陳兆勛
指導教授(外文):Chao-Hsun Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:直流電漿輔助化學氣相沉積儀染料敏化太陽能電池奈米碳管反電極鎳金屬催化層
外文關鍵詞:DC-PECVDdye-sensitized solar cellscarbon nanotubescounter electrodenickel metal catalyst layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主要目的是探討染料敏化太陽能電池之反電極,以直流電漿輔助化學氣相沉積儀,所成長的奈米碳管,來當作染料敏化太陽能電池之反電極。
在溫度350℃下,藉由鎳金屬催化層及直流電功率為實驗參數,5~40nm的鎳金屬催化層,100W和150W直流電功率,成長出不同樣貌的相異奈米碳管,並以SEM來量測其結構,來探討製程的參數與奈米碳管成長的樣貌。
由二氧化鈦薄膜吸附濃度為1.0×10-4M 的N719染料作為工作電極,Acetonitrile為溶劑,0.5M LiI、0.05M I2、0.5M tert-butyl pyridine(TBP)為電解質溶液,而以不同樣貌奈米碳管作為反電極組裝的染料敏化太陽能電池,由光電轉化效率量測系統,量取其效率,並探討不同樣貌奈米碳管對於染料敏化太陽能電池效率之影響。
最後以鎳金屬催化層5nm,150W直流電功率,所成長之奈米碳管,為最佳染料敏化太陽能反電極,其效率可達1.9%。
The main part of this dissertation is the study of carbon canotubes growth by DC-PECVD as counter electrode for dye-sensitized solar cells.
At temperature 350℃, it will grow different types of CNTs by controling nickel metal catalyst layer from 5 to 40nm and with direct-current power , 100W and 150W. Structure and ingredients of the CNTs were studied by SEM.
With regard to the producing method of working electrode, adsorbing dye molecules(N719 1.0×10-4M) on the TiO2 thin film;The liquid electrolyte 0.5M LiI, 0.05M I2, 0.5M tert-butyl pyridine (TBP) dissolving in Acetonitrile was used throughout this work;and then we used different types of CNTs on plate as counter electrode.
Efficiency of DSSCs was measured by Photovoltaic Measurement System. The employment of different CNTS as counter electrodes was studied. CNTs growing on a 5nm nickel metal catalysis and with 150W direct-current power reached a efficiency of 1.9%. We found that to be the best choice for counter electrodes.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第1章 緒論 1
1-1 前言 1
1-2 太陽能電池的種類 2
1-2-1 結晶矽太陽能 2
1-2-2 矽基薄膜太陽能電池 2
1-2-3 染料敏化太陽能電池 3
1-3 研究動機與目的 6
第2章 原理與文獻回顧 8
2-1 二氧化鈦 8
2-2 染料 10
2-3 電解質 14
2-4 反電極 15
2-5 染料敏化太陽能電池工作原理 16
2-6 染料敏化太陽能電池的光電轉換效應 18
2-7 奈米碳管 21
2-7-1 單層奈米碳管 22
2-7-2 多層奈米碳管 25
2-8 奈米碳管的成長機制 26
2-9 奈米碳管製程 27
2-9-1 電弧放電法(arc discharge method) 27
2-9-2 雷射氣化法(Laser Vaporization) 28
2-9-3 化學氣相沉積法(Chemical Vapor Deposition,CVD) 29
2-10 直流式電漿輔助化學氣相沉積 31
第3章 實驗設備與方法 33
3-1 實驗材料 33
3-2 實驗設備 34
3-3 自組裝DC PECVD 35
3-4 催化層製備 37
3-5 奈米碳管反電極製備 38
3-6 二氧化鈦薄膜電極製備 40
3-7 染料敏化太陽能電池組裝 40
3-8 測量儀器 41
3-8-1 SEM 41
3-8-2 光電轉換效率量測系統 41
第4章 實驗結果與討論 43
4-1 奈米碳管製程條件 43
4-2 由SEM檢視奈米碳管 44
4-3 染料敏化太陽能電池效率 56
第5章 結論 62
5-1 結論 62
5-2 建議 63
參考文獻 65
(1)D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 25, 676 (1954)
(2)黃建昇﹐”結晶矽太陽電池發展近況”﹐工業材料雜誌203期﹐150 (2003)
(3)第6屆全國工業發展會議記錄﹐”加速推動太陽光電產業發展策略”﹐經濟部能源局 (2007)
(4)H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature 261, 402 (1976)
(5)B. O’Regan, M. Grätzel, Nature 353, 737 (1991)
(6)工研院太陽光電科技中心 (2007)
(7)M. A.Green, K. Emery, D. L. King, S. Igari, W. Warta, Progress in Photovoltaics 13, 49 (2005)
(8)S. Frank, P. Poncharal, Z.L. Wang, et al., Science 280, 1744-1746 (1998)
(9)A. Fujishima, K. Honda, Nature 238, 37-38 (1972)
(10)A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 95, 735 (1995)
(11)K. M. Reddy, S. V. Manorama, A. R. Reddy, Mater. Chem. and Phy.78, 239-245 (2002)
(12)K. Nagaveni, M. S. Hegde, N. Ravishankar ,G. N. Subbanna, G. Madras, Langmuir 20, 2900–2907 (2004)
(13)M. Grätzel, Nature 414, 338-344 (2001)
(14)N. Robertson, Angew. Chem. 45, 2338-2345 (2006)
(15)周啟達, 碩士論文 (民國九十五年)
(16)黃明祺, 碩士論文 (民國九十七年)
(17)M. K. Nazeeruddin, M. Grätzel, Comprehensive Coordination Chemistry II Vol. 9, chap. 16 (2004)
(18)L. Spiccia, G. B. Deacon, C. M. Kepert, Coord. Chem. Rev.248, 1329 (2004)
(19)R. Argazzi, N. Y. M. Iha, H. Zabri, F. Odobel, C. A. Bignozzi,Coord. Chem. Rev. 248, 1299 (2004)
(20)A. S. Polo, M. K. Itokazu, N. Y. M. Iha, Coord. Chem. Rev. 248, 1343 (2004)
(21)C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, Chem. Soc. Rev. 29, 87 (2000)
(22)Kim S. Finnie, John R. Bartlett, James L. WoolfreyC., Langmuir 14, 2744-2749 (1998)
(23)M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. MTller, P. Liska, N. Vlachopolous, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)
(24)M. K. Nazeeruddin, P. Pechy, M. Grätzel, Chem. Comm., 1705-1706 (1997)
(25)M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphrey-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 38, 6298 (1999)
(26)C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J.Phys. Chem. B 106, 12693 (2002)
(27)Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 107, 8981 (2003)
(28)Hiroki Usui, Hiroshi Matsui, Nobuo Tanabe, Shozo Yanagida, J. Photochem. Photobio. A: Chem. 164, 97-101 (2004)
(29)Dong-Won Kima, Yeon-Bok Jeong, Sang-Hern Kima, Dong-Yoon Lee, Jae-Sung Song, Chem. Comm., 2972 (2002)
(30)Ryoichi Komiya, Liyuan Han, Ryohsuke Yamanaka, Ashraful Islam, Takehito Mitate, J. Photochem. Photobio. A: Chem. 164, 123-127 (2004)
(31)K Tennakone et al., J. Phys. D: Appl. Phys. 31, 1492-1496 (1998)
(32)B. O’Regan, D. T. Schwartz, Chem. Mater. 7, 1349-1354 (1995)
(33)A. Kay, M. Grätzel, Sol. Energy Mater. Sol. Cells 44, 99-117 (1996)
(34)Won Jae Lee, Easwaramoorthi Ramasamy, Dong Yoon Leea, Bok Ki Min, Jae Sung Song, Proc. of SPIE Vol. 6038, 60381T (2006)
(35)S. Hwang, J. Moon, S. Lee, D.-H. Kim, D. Lee, W. Choi, M. Jeon, ELECTRONICS LETTERS Vol. 43 No. 25 (2007)
(36)A. Hagfeldt, M. Grätzel, Chem. Rev.95, 49-68 (1995)
(37)M. Grätzel, Curr Opin in Colloid In 4, 314-321 (1999)
(38)D. Cahen, G. Hodes, M. Gratzel, J. F. Guillemoles, I. Riess, J Phys Chem B 104, 2053 (2000)
(39)K. Kalyanasundaram, M. Grätzel, Coordin Chem Rev 177, 347 (1998)
(40)Yasuo CHIBA, Ashraful ISLAM, Yuki WATANABE, Ryoichi KOMIYA, Naoki KOIDE, Liyuan HAN, Japanese Journal of Applied Physics 25, 638–640 (2006)
(41)S. Iijima, Nature 354, 56-58 (1991)
(42)Kin-Tak Lau, David Hui, Composites : Part B 33, 263-277 (2002)
(43)M. S. Dresselhaus, G. Dresselhau, P. Avouris, Carbon Nanotubes: Synthesis Structure, Properties, and Applications vol. 80, Springer, New York (2001)
(44)M. S. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995)
(45)H. Dai, Acc. Chem. Res. 35, 1035-1044 (2002)
(46)林盈助, 博士論文 (民國九十四年)
(47)O. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, S. H. Glarum, Science 263, 1744-1747 (1994)
(48)S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, J. B. Nagy, Science 265, 635-639 (1994)
(49)C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 81, 1869-1872 (1998)
(50)M. J. Yacaman, M.M. Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 62, 202-204 (1993)
(51)R.T.K. Baker, P.S. Harris, Formation of Filamentous Carbon
in Chemistry and Physics of Carbon 14, Marcel Dekker, New York, 83 (1978)
(52)T. W. Ebbesen, P. M. Ajayan, Nature 358, 220-222 (1992)
(53)Y. Saito, S. Uemura, Carbon 38, 169-182 (2000)
(54)T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49-54 (1995)
(55)J. I. Sohn, S. Lee, Y-H. Song, et al., Current Applied Physics 1, 61-65 (2001)
(56)M Meyyappan, Lance Delzeit, Alan Cassell, David Hash, Plasma Sources Sci. Technol. 12, 205-216 (2003)
(57)Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, J. M. Kim, Diamond and Related Materials 11, 59 (2002)
(58)M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne, J. Appl. Phys.Vol. 90, 5309 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊