跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇美惠
研究生(外文):Mei-Hui Su
論文名稱:利用電化學石英晶體微天平探討錳鐵氧化物超高電容器之反應機制
論文名稱(外文):Study on Reaction Mechanism of MnFe2O4 Supercapacitors by EQCM
指導教授:吳乃立
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:77
中文關鍵詞:超高電容器錳鐵氧電化學石英晶體微天平反應機制
外文關鍵詞:supercapacitorMnFe2O4EQCMreaction mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用氧化定電位沉積法可以將硫酸錳與硫酸鐵所組成特定比例的先驅溶液,成功於基材上電鍍製備錳鐵氧化物。並且經由X光繞射分析與化學元素分析可發現,錳鐵氧膜在經過鍛燒後會呈現結晶的97.4% MnFe2O4與2.6% Fe3O4之共沉積材料。此外,在低溫下鍛燒的錳鐵氧膜電極所呈現的電流曲線較接近偽電容的性質。
另外,噴鍍製備的錳鐵氧化物在包含LiCl、NaCl、KCl、CaCl2以及Na2SO4等多種鹽類水溶液中的偽電容儲電反應也被更深入的研究。藉由電化學石英晶體微天平(EQCM)與X光光電子光譜(XPS)分析結果發現,在尖晶石結構四面體位置上的錳離子之還原/氧化反應,主要是由各種鹽類溶液中的陽離子於錳鐵氧材料內部嵌入/遷出程序,而達成反應平衡。當在NaCl、LiCl與CaCl2電解液中,相對是由H3O+、Li+ 與Ca+2在錳鐵氧內部嵌入/遷出所造成偽電容現象;此外,在KCl溶液中,主要是由K+化學吸附於錳鐵氧表面並伴隨著H3O+在內部的嵌入/遷出程序以達成偽電容機制。
Electrodeposition of MnFe2O4 film was succesfully prepared by using anodic electroplating method from optimized precusors composed of MnSO4 and FeSO4 solutions. After calcination of as-deposited film, from EDX and XRD analysis, film composition was attributed to 97.4% amount of MnFe2O4 and 2.6% amount of Fe3O4, as a co-deposited MnFe2O4 film electrode. In addition, film electrodes annealed at low temperature showed more likely current profiles for supercapacitors in NaCl(aq).
Furthermore, pseudocapacitive charge-storage reaction of MnFe2O4 in several aqueous alkali salts, alkaline salts and sulfate solutions, including LiCl, NaCl, KCl, CaCl2 and Na2SO4, has been studied on sprayed MnFe2O4 thin-films. Electrochemical quartz-crystal microbalance and X-ray photoelectron spectroscopy data further indicated that, the predominant reduction/oxidation of the Mn ions at the tetrahedral sites of the spinel was mainly balanced by insertion/extraction of the solution cations, H3O+, Li+ and Ca+2 into/from the ferrite structure while in NaCl, LiCl and CaCl2 electrolytes respectively, or balanced by some extent of chemisorption of K+ on ferrite surface along with insertion/extraction of H3O+ into the bulk materials in KCl solution.
摘要 I
Abstract II
Table of contents II
List of Figures V
List of Tables VII
Chapter 1 Introduction 1
Chapter 2 Theory and Literature Review 3
2.1 Introduction to Electrochemical Capacitors 3
2.1.1 Introduction to Energy Storage Systems 3
2.1.2 Classification of Electrochemical Capacitors 7
2.1.3 Characteristic Analysis of Electrochemical Capacitors……………...11
2.1.4 Self-discharge Mechanism of Electrochemical Capacitors 13
2.2 Development of Electrochemical Capacitors……………………………….15
2.2.1 Electrode Materials 15
2.2.2 Electrolytes 18
2.3 Introduction to Manganese Ferrite, MnFe2O4………………………………20
2.3.1 Structure and Characteristics………………………………………...20
2.3.2 Synthesis and Development on Supercapacitors…………………….22
2.3.3 Pseudocapacitance Mechanism of MnFe2O4 in Aqueous Electrolytes………………………………………………………………...25
Chapter 3 Experimental………………………………………………………….27
3.1 Synthesis of Eletrode Materials 27
3.1.1 Electroplated MnFe2O4 Film………………………………………...28
3.1.2 MnFe2O4/Carbon Black Composite Materials………………………30
3.2 Analysis and Characterization 32
3.2.1 Microstructure 32
3.2.2 Phase Identification 32
3.2.3 Measurement of Chemical State……………………………………..33
3.3 Electrochemical Characteriztions…………………………………………...34
3.3.1 Preparation of Electrodes 34
3.3.2 Cyclic Voltammetry 34
3.3.3 Electrochemical Qaurtz Crystal Microbalance………………………35
Chapter 4. Preparation of MnFe2O4 Supercapacitor by Using Electroplating Method……………………………………………………………………….…37
4.1 Introduction ..37
4.2 Preparation of Electroplated MnFe2O4 Thin Film…………………………..38
4.2.1 Synthesis of Optimized Electrodeposited Film……………………...38
4.2.2 Calcination of as-electroplated MnFe2Ox Thin Film………………...40
4.3 Basic Characterization of co-deposited MnFe2O4 Film Electrode in NaCl(aq)………………………………………………………..…………….42
4.4 Summary……………………………………………………………………44
Chapter 5 Investigation on Pseudocapacitive Charge-Storage Reaction of MnFe2O4 Supercapacitor in Aqueous Electrolytes…………………………..45
5.1 Introduction…………………………………………………………………45
5.2 Preparation of MnFe2O4/CB Thin Film by Spray Method………………….47
5.3 Investigation on Charge Storage Behavior of MnFe2O4/CB………………..48
5.4 Summary……………………………………………………………………67
Chapter 6 Conclusions……………………………………………………………68
References 69
1. B. E. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources, 66, 1-14 (1997).
2. B. E. Conway, “Transition from supercapacitor to battery behavior in electrochemical energy-storage”, J. Electrochem. Soc., 138, 1539-1548 (1991).
3. X. Liu, T. Momma, and T. Osaka, Chem. Lett., “Improvement of active carbon fiber electrode for electric double layer capacitor by electrochemical redox pretreatment”, 1996, 115 (1996).
4. I. Tanahashi, A. Yoshida, and A. Nishino, “Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors”, J. Electrochem. Soc., 137, 3052 (1990).
5. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45, 2483-2498 (2000).
6. B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Plenum press, New York (1999).
7. A. Nishino, Carbon, 132, 57 (1988).
8. H. von Helmholtz, Ann. Phys. (Leipzig), 89, 211 (1853).
9. J. P. Zheng and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc., 142, L6 (1995).
10. J. P. Zheng and T. R. Jow, “High energy and high power density electrochemical capacitors”, J. Power Sources, 62, 155 (1996).
11. K. C. Liu and M. A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors”, J. Electrochem. Soc., 143, 124 (1996).
12. H. Y. Lee and J. B. Goodenough, “Supercapacitor behavior with KCl electrolyte”, J. Solid State Chem., 144, 220 (1999).
13. S. C. Pang, M. A. Anderson, and T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147, 444 (2000).
14. S. Y. Wang, “Characterization and mechanism of Fe3O4/carbon supercapacitors”, Ph.D Thesis, Department of Chemical Engineering, National Taiwan University, p. 17-18 (2004).
15. B. E. Conway, W. G. Pell, and T. C. Liu, “Diagnostic analyses for mechanism of self-discharge of electrochemical capacitors and batteries”, J. Power Sources, 65, 53-59 (1997).
16. B. W. Ricketts and C. Ton-That, “Self-discharge of carbon-based supercapacitors with organic electrolytes”, J. Power Sources, 89, 64-69 (2000).
17. A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources, 91, 37 (2000).
18. B. E. Conway, Electrochemical supercapacitors:scientific fundamentals and technological applications, Kluwer Academic/Plenum, New York (1999).
19. E. Frackowiak and F. Beguin, “Carbon materials for the electrochemical
storage of energy in capacitors”, Carbon, 39, 937-950 (2001).
20. D. Y. Qu, “Studies of the activated carbons used in double-layer Supercapacitors”, J. Power Sources, 109, 403-411 (2002).
21. K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski,
“Electrochemical capacitors based on highly porous carbons prepared by
KOH activation”, Electrochim. Acta, 49, 515-523 (2004).
22. T. R. Jow and J. P. Zheng, “Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide”, J. Electrochem. Soc., 145, 49-82 (1998).
23. J. P. Zheng, “Ruthenium oxide-carbon composite electrodes for electrochemical capacitors”, Electrochem. Solid-State Lett., 2, 359-361 (1999).
24. C. C. Hu and Y. H. Huang, “Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors”, J. Electrochem. Soc., 146, 2465-2471 (1999).
25. I. H. Kim and K. B. Kim, “Ruthenium oxide thin film electrodes for supercapacitors”, Electrochem. Solid-State Lett., 4, A62-A64 (2001).
26. J. Zhang, D. Jiang, B. Chen. J. Zhu, L. Jiang, and H. Fang, “Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor”, J. Electrochem. Soc., 148, A1362-A1367 (2001).
27. H. Y. Lee, V. Manivannan, and J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte”, C. R. Acad. Sci. Paris, t. 2, serie II c, 565-577 (1999).
28. H. Y. Lee, S. W. Kim, and H. Y. Lee, “Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode”, Electrochem. Solid-State Lett., 4, A19-A22 (2001).
29. M. Toupin, T. Brousse, and D. Bélanger, “Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide”, Chem. Mater., 14, 3946-3952 (2002).
30. C. C. Hu and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Commun., 4, 105-109 (2002).
31. C. C. Hu and T. W. Tsou, “Capacitive and textual characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta, 47, 3523-3532 (2002).
32. M. S. Hong, S. H. Lee, and S. W. Kim, “Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor”, Electrochem. Solid-State Lett., 5, A227-A230 (2002).
33. J. Jiang and A. Kucernak, “Electrochemical supercapacitor material based in manganese oxide: preparation and characterization”, Electrochim. Acta, 47, 2381-2386 (2002).
34. Y. U. Jeong and A. Manthiram, “Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes”, J. Electrochem. Soc., 149, A1419-A1422 (2002).
35. H. Kim and B. N. Popov, “Synthesis and characterization of MnO2-based mixed oxides as supercapacitors”, J. Electrochem. Soc., 150, D56-D62 (2003).
36. J.-K. Chang and W.-T. Tsai, “Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors”, J. Electrochem. Soc., 150, A1333-A1338 (2003).
37. R. N. Reddy and R. G. Reddy, “Sol-gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124, 330-337 (2003).
38. R. N. Reddy and R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material”, J. Power Sources, 132, 315-320 (2004).
39. M. Toupin, T. Brousse, and D. Belanger, “Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor”, Chem. Mater., 16, 3184-3190 (2004).
40. J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, “A new type of MnO2⋅xH2O/CRF composite electrode for supercapacitors”, J. Power Sources, 160, 1501-1505 (2006).
41. V. Subramanian, H. Zhu, and B. Wei, “Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials”, Electrochem. Commun., 8, 827-832 (2006).
42. S. Devaraj, and N. Munichandraiah, ”Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing”, J. Electrochem. Soc., 154, A80-A88 (2007).
43. N. L. Wu, S. Y. Wang, C. Y. Han, D. S. Wu and L. R. Shiue, “Electrochemical capacitor of magnetite in aqueous electrolytes”, J. Power Sources, 113, 173-178 (2003).
44. S. Y. Wang and N. L. Wu, “Operating characteristics of aqueous magnetite electrochemical capacitors”, J. Appl. Electrochem., 33, 345-348 (2003).
45. T. Brousse and D. Bélanger, “A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte”, Electrochem. Solid-State Lett., 6, A244-A248 (2003).
46. K. W. Chung, K .B. Kim, S. H. Han, and H. Lee, “Novel synthesis and electrochemical characterization of nano-sized cellular Fe3O4 thin film”, Electrochem. Solid-State Lett., 8, A259-A262 (2005).
47. C. Lin, J. A. Ritter, and B. V. Popov, ”Characterization of sol-gel derived cobalt oxide xerogels as electrochemical capacitors”, J. Electrochem. Soc., 145, 4097-4103 (1998).
48. V. Srinivasan and J. W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation”, J. Power Sources, 108, 15-20 (2002).
49. H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, and Y. S. Yoon, “Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors”, J. Power Sources, 102, 167-171 (2001).
50. B. Marsan, N. Fradette, and G. Beaudoin, J. Electrochem. Soc., 139,
1889 (1992).
51. L. Nanni, S. Polizzi, A. Benedetti, and A.D. Battisti, “Morphology,
Microstructure, and Electrocatalytic Properties of RuO2-SnO2 Thin Films”
J. Electrochem. Soc., 146, 220-225 (1999).
52. W. C. Chen and T. C. Wen, “Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors”, J. Power Sources, 117, 273-282 (2003).
53. J. M. Pernaut and G. Goulart, “Electrochemical capacitor using polymer/carbon composites”, J. Power Sources, 55, 93-96 (1995).
54. X. Liu and T. Osaka, “Properties of electric double-layer capacitors with various polymer gel electrolytes”, J. Electrochem. Soc., 144, 3066-3071 (1997).
55. T. Osaka, X. Liu, and M. Nojima, “Acetylene black/poly(vinylidene fluoride) gel electrolyte composite electrode for an electric double-layer capacitor”, J. Power Sources, 74, 122-128 (1998).
56. S. Calvin, E. E. Carpenter, V. G. Harris, and S. A. Morrison, “Use of multiple-edge refinement of extended X-ray absorption fine structure to determine site occupancy in mixed ferrite nanpparticles”, Appl. Phys. Lett., 81, 3828-3830 (2002).
57. Z. J. Zhang, Z. L. Wang, B. C. Chakoumakos, and J. S. Yin, “Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanoparticles”, J. Am. Chem. Soc., 120, 1800-1804 (1998).
58. J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. Devlin, and A. Kostikas, “Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation”, Phys. Rev. B, 54, 9288-9296 (1996).
59. D. J. Fatemi, V. G. Harris, V. M. Browning, and J. P. Kirkland, “Processing and cation redistribution of MnZn ferrites via high-energy ball milling”, J. Appl. Phys., 83, 6867-6869 (1998).
60. M. H. Mahmoud, H. H. Hamdeh, A. I. Abdel-Mageed, A. M. Abdallah, and M. K. Fayek, “Effect of HEBM on the cation distribution of Mn-ferrite”, Physica B, 291, 49-53 (2000).
61. J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis, E. Devlin, and A. Kostikas, “Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation”, Phys. Rev. B, 54, 9288-9296 (1966).
62. V. M. Bujoreanu, L. Diamandescu, and M. Brezeanu, “On the structure of manganse ferrite powder prepared by coprecipitation from MnO2 and FeSO4.7H2O”, Mater. Lett., 46, 169-174 (2000).
63. R. D. K. Misra, S. Gubba manganese ferrites synthesized by reverse micelle technique”, Mater. Sci. Eng. B, 111, 164-174 (2004).
64. E. E. Carpenter, C. J. O’Connor, and V. G. Harris, “Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis”, J. Appl. Phys., 85, 5175-5177 (1999).
65. S. Komarneni, M. C. D’Arrigo, C. Leonelli, G. C. Pellacani, and H. Katsuki, “Microwave-hydrothermal synthesis of nanophase ferrites”, J. Am. Cera. Soc., 81, 3041-3043 (1998).
66. E. Kang, J. Park, Y. Hwang, M. Kang, J. G. Park, and T. Hyeon, “Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals“, J. Phys. Chem. B, 108, 13932-13935 (2004).
67. M. H. Mahmoud, H. H. Hamdeh, A. I. Abdel-Mageed, A. M. Abdallah, and M. K. Fayek, “Effect of HEBM on the cation distribution of Mn-ferrite”, Physica B, 291, 49-53 (2000).
68. V. G. Harris, D. J. Fatemi, J. O. Cross, E. E. Carpenter, V. M. Browning, J. P. Kirkland, A. Mohan, and G. J. Long, “One-step processing of spinel ferrites via the high-energy ball milling of binary oxides”, J. Appl. Phys., 94, 496-501 (2003).
69. Y. Q. Chu, Z. W. Fu, and Q. Z. Qin, “Cobalt ferrite thin films as anode material for lithium ion batteries“, Electrochim. Acta, 49, 4915-4921 (2004).
70. R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, J. C. Jumas, and J. Olivier-Fourcade, “Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4”, Electrochem. Commun., 5, 16-21 (2003).
71. Y. N. NuLi, Y. Q. Chu, and Q. Z. Qin, “Nanocrystalline ZnFe2O4 and la, A. Kale, and W. F. Egelhoff Jr., “A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries”, J. electrochem. Soc., 151, A1077-A1083 (2004).
72. S. L. Kuo and N. L. Wu, “Electrochemical Capacitor of MnFe2O4 with NaCl Electrolyte”, Electrochem. Solid-State Lett., 8, A495-A499 (2005).
73. S. L. Kuo and N. L. Wu, “Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors”, J. Power Sources, 162, 14372-1443 (2006).
74. S. L. Kuo, J. F. Lee and N. L. Wu, “Study on Pseudocapacitance Mechanism of Aqueous MnFe2O4 Supercapacitor”, J. electrochem. Soc., 154, A34-A38 (2007).
75. G. Oskam, P. M. Vereecken and P. C. Searson, “Electrochemical deposition of copper on n-Si/TiN”, J. Electrochem Soc., 146, 1436 (1999).
76. Y. S. Kang, S. Risbud, J. F. Rabolt and P. Stroeve, “Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles”, Chem. Mater., 8, 2209-2211 (1996).
77. P. M. DOVE and C. J. NIX, “The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz”, Geochimica et Cosmochimica Acta, 61, 3329-3340 (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top