跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/18 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉崇成
研究生(外文):Chong-Cheng Liu
論文名稱:磁場、溫度與雜質對方解石晶體成長之影響
論文名稱(外文):Effects of Magnetic Field, Temperature and Impurity on Crystal Growth of Calcite
指導教授:戴怡德戴怡德引用關係
指導教授(外文):Clifford Yi-Der Tai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:124
中文關鍵詞:晶體成長方解石磁場效應溫度效應雜質效應鍶離子亞鐵離子
外文關鍵詞:Crystal growthCalciteMagnetic field effectTemperature effectImpurity effectStrontium ionIron(II) ion
相關次數:
  • 被引用被引用:5
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在工業程序上,冷卻水的管路內及鍋爐壁上的結垢是很常見的問題,一旦結垢的問題的產生,除了造成熱交換的效率降低,也會導致堵塞管路。由於水中溫度及pH值的變化,使得在壁上容易結垢,其中又以碳酸鈣為結垢的主要成分,而方解石不僅僅是碳酸鈣多晶型的其中一種,更是常見的結垢成分。而通常結垢問題都發生在高溫的設備中,像是熱交換器、鍋爐,因為碳酸鈣隨著溫度提高溶解度越低,所以高溫下的水常常是形成過飽和溶液的條件,導致結垢於壁面上。在眾多的防垢技術中,其中一種是利用磁場來防垢,雖然防垢效果眾說紛紜,但市面上以磁場來抑制管內結垢的方法已有80年的歷史。而在程序用水中含有不同種類的雜質離子,可能會加速或抑制方解石的成長。本研究採用定組成法,於攪拌結晶槽中進行方解石成長實驗,進而討論磁場施加與否、溫度的高低與雜質的不同對方解石成長速率的影響。

方解石晶體成長實驗結果發現,在未受磁的情況下,常溫(25 °C)下的過飽和溶液,方解石晶體的成長速率可隨過飽和度與pH值增加而提升。無磁場作用下,常溫(25 °C)下的過飽和溶液中含有不同的濃度的鍶離子/亞鐵離子,改變雜質濃度從0.5至2.0 ppm,每當濃度增加2倍時,鍶離子造成方解石成長速率上升約10 %;而亞鐵離子導致方解石成長速率下降約22 %。在未受磁情況下,溶液溫度從25 °C提升40 °C將使得方解石晶體的成長下降約60 %。亦在未受磁情況下,高溫(35 °C)下受雜質影響之趨勢與常溫下相仿,方解石成長速率隨著鍶離子濃度的上升而增快;而亞鐵離子濃度對成長速率為抑制之作用。

在磁場存在之條件下,溶液中過飽和度、pH值、溫度對方解石成長速率亦有影響。在過飽和度為0.8至1.2、pH值為8.5到9.5、溫度為25 °C到40 °C,磁場雖都可完全抑制方解石晶體成長,但在低過飽和度、低pH值與高溫的情況下,方解石被磁場完全抑制所需時間較短。

受磁20小時的常溫(25 °C)溶液中含有微量鍶離子/亞鐵離子濃度時,改變鍶離子濃度從0.5至2.0 ppm,成長速率隨著鍶離子濃度的增加而提升;當亞鐵離子濃度從0.5增至2.0 ppm時,而成長速率隨著亞鐵離子濃度的增加而降低。

本實驗亦探討受磁20小時的高溫(35 °C)溶液中含有微量鍶離子/亞鐵離子濃度時,磁場、高溫與雜質三者之交互作用。在磁場作用下,當溶液中有雜質存在時,方解石成長速率不會被完全抑制,將鍶離子濃度從0.5提高至2.0 ppm,成長速率隨著濃度的提升而增大;將亞鐵離子濃度提高從0.5增至2.0 ppm時,成長速率隨著濃度的提升而下降。方解石晶體在磁場與雜質的環境中,溫度的提升,可使成長速率下降。
The buildup of scale deposit inside cooling water pipes and boiler walls is a common and costly problem for many industrial processes. The scale deposit leads to a reduction in heat transfer efficiency and to a partial or complete blockage of water flow. Due to the variation in pH and temperature, the scale is formed, which composes of calcium carbonate in the majority. Calcite is one of the polymorphs of calcium carbonate and the most common form of scales. The scale formation usually occurs in the equipments operated at higher temperature, such as heat exchanger and boiler. Since calcium carbonate becomes less soluble with increasing temperature, the hot water turns into supersaturated conditions with regard to CaCO3, which deposits on the hot surfaces. There are several scale prevention methods, among which the magnetic treatment is the most controversial one. However, the magnetic treatment device has been available in the market for about 80 years. Moreover, the process water contains various kinds of impurity ions, which would accelerate or inhibit the growth of calcite crystals. In this research, a constant – composition method was adopted to measure the calcite growth rate in a stirred crystallizer. The principal subject of this research is to investigate the effects of magnetic field, temperature and impurity on the calcite growth.

In the series of calcite growth experiments at 25°C, the calcite growth rate increased with increasing supersaturation and pH value without magnetic treatment. In the absence of magnetic field, the enhancement of calcite growth rate was about 10 % when the concentration of strontium ion was varied by a factor of 2, i.e., from 0.5 to 1.0 ppm or from 1.0 to 2.0 ppm. On the other hand, the reducing percentage of growth rate was about 22 % when the concentration of iron(II) ion was altered by a factor of 2. As to the temperature effect, the calcite growth rate decreased with an increase in temperature, from 25 to 40°C. When the supersaturated solution at 35°C contained various concentrations of strontium or iron(II) ion, we found that an increase in Sr2+ concentration was accompanied by an increase in calcite growth rate. However, the effects of Fe2+ concentration on the calcite growth rate were opposite to that of Sr2+.

In the presence of magnetic field, the calcite growth rate was also influenced by the solution variables, including supersaturation, pH value and temperature. Although the growth rate was suppressed completely in the presence of magnetic field for the supersaturation from 0.8 to 1.2, the pH value from 8.5 to 9.5, and the temperature from 25 to 40°C, the time needed to suppress the growth rate completely is shorter under high temperature, low pH and supersaturation.

When the supersaturated solution containing a small quantity of strontium or iron(II) ion at 25°C was magnetized by the Descal-A-Matic DC-1 for 20 hours, the calcite growth rate would not be suppressed completely. The growth rate increased with increasing Sr2+ concentration, from 0.5 to 2.0 ppm. On the other hand, the growth rate decreased with increasing Fe2+ concentration.

The experiment was further conducted to investigate the interaction of magnetic field, temperature and impurity on the growth of calcite crystal. The supersaturated solution containing impurity was magnetized for 20 hours at 35°C before growth experiment. Under these circumstances, the growth rate of calcite would not be suppressed completely either. When the concentration of Sr2+ increased from 0.5 to 2.0 ppm, the growth rate also increased. Furthermore, the trend of Fe2+ concentration on growth rate was opposite. As to the temperature effect, the higher temperature led to a reduction in the calcite growth rate, when magnetic field and impurities were present.
中文摘要 I
英文摘要 III
目錄 V
圖索引 VIII
表索引 XV
第一章 緒論 1
第二章 文獻回顧 5
2-1 過飽和度 5
2-2 介穩區 8
2-3 晶體成長與雙重阻力模式 11
2-4 碳酸鈣之多晶型體 14
2-5 操作變數對晶體成長的影響 19
2-5-1 pH值之影響 19
2-5-2 離子強度之影響 20
2-5-3 活性比之影響 21
2-6 磁場對碳酸鈣結晶之影響 22
2-6-1 磁場對碳酸鈣成長與成核之影響 22
2-6-2 磁場對碳酸鈣晶型之影響 26
2-7 溫度對碳酸鈣晶型的影響 30
2-8 雜質對碳酸鈣結晶的影響 36
2-8-1 雜質對碳酸鈣成長與成核之影響 36
2-8-2 雜質對碳酸鈣晶型之影響 40
第三章 原理 42
3-1 碳酸鈣過飽和溶液中之各物種分佈 42
3-2 定組成法 45
3-3 晶體線性成長速率的推導 49
第四章 實驗裝置與步驟 51
4-1 實驗裝置 51
4-2 實驗藥品 56
4-3 分析儀器 59
4-4 總鈣濃度之定量分析 60
4-5 操作原理 62
4-6 實驗步驟 63
4-6-1 成長實驗步驟 63
4-6-2 雜質環境下之成長實驗步驟 65
4-7 晶體線性成長速率之求取 67
4-8 實驗過程之注意事項 69
第五章 結果與討論 71
5-1 無磁場作用下之方解石晶體成長 71
5-1-1 過飽和度效應 71
5-1-2 pH值效應 74
5-1-3 溫度效應 77
5-1-4 雜質效應 79
5-1-5 不同溫度及雜質作用時之方解石晶體成長 85
5-2 磁場作用下之碳酸鈣晶體成長 90
5-2-1 過飽和度效應 90
5-2-2 pH值效應 92
5-3 磁場作用下之方解石晶體成長之溫度效應 94
5-4 磁場與雜質作用下之方解石晶體成長 96
5-5 磁場、溫度與雜質三者交互作用下之方解石晶體成長 102
5-6 方解石與文石成長現象之比較 107
第六章 結論 113
符號說明 116
參考文獻 118
Baker J. S. and Judd S. J., “Magnetic amelioration of scale formation,” Water Research, 30(2), 247-260 (1996)

Barrett R. A., and Parsons S. A., “The influence of magnetic fields on calcium carbonate precipitation,” Water Research, 32(3), 609-612 (1998)

Bischoff J. L., Fitzpartrick J. A., and Rosenbauer R. J., “The solubility and stabilization of ikaite (CaCO3•6H2O) from 0o to 25 °C: environmental and paleoclimatic implications for thinolite tufa,” The Journal of Geology, 101(1), 21-33 (1993)

Brečević L., and Nielsen A. E., “Solubility of amorphous calcium carbonate,” Journal of Crystal Growth, 98(3), 504-510 (1989)

Bromley L. A., “Thermodynamic properties of strong electrolytes in aqueous solutions,” AIChE Journal, 19(2), 313-320 (1973)

Crolet J. L., and Ledion J., “Experimental evaluation of efficiency of magnetic anti-scale device,” Technical Scientific Methods, 83(9), 435-442 (1988)

Dalas E., and Koutsoukos P. G., “The effect of magnetic fields on calcium carbonate scale formation,” Journal of Crystal Growth, 96(4), 802-806 (1989)

De Villiers J. P. R., “Crystal structures of aragonite, strontianite, and witherite,” American Mineralogist, 56(5), 758-767 (1971)

Donaldson J. D., “The magnetic treatment of fluids,” Presented at Eurocorr 94/UK Corrosion 94, Bournemouth, U.K, 31st October-3rd November (1994)

Donaldson J. D., and Grimes S. M., “Lifting the scales from our pipes,” New Scientist, 117(1600), 43-46 (1988)

Elfil H., and Roques H., “Role of hydrate phases of calcium carbonate on the scaling phenomenon,” Desalination, 137(2), 177-186 (2001)

Elfil H., and Roques H., “Prediction of the limit of the metastable zone in the “CaCO3-CO2-H2O” system,” AIChE Journal, 50(8), 1908-1916 (2004)

Ellingsen F. T., and Kristiansen H., “Does magnetic treatment influence precipitation of calcium carbonate from supersaturated solutions” Vatten, 35(4), 309-315 (1979)

Ellingsen F. T., and Vik E. A., “A revue of scale formation with emphasis on magnetic water treatment,” In Proceedings of 14th World Congress of International Water Supply Association, Zurich, SS8, 12-25 (1982)

Gabrielli C., Jaouhari R., Maurin G., and Keddam M., “Magnetic water treatment for scale prevention,” Water Research, 35(13), 3249-3259 (2001)

Gruber C. E., and Carda D. D., “Performance analysis of permanent magnet type water treatment devices,” Final Report issued to the Water Quality Association, South Dakota School of Mines and Technology (1981)

Hasson D. and Bramson D., “The performance of a magnetic water conditioner under accelerated scaling conditions,” In Proc. Prog. Prevention of Fouling of Industrial Plant, Nottingham, U.K, 217-223 (1981)

Hasson D. and Bramson D., “Effectiveness of magnetic water treatment in suppressing CaCO3 scale deposition,” Industrial and Engineering Chemistry Process Design and Development, 24(3), 588-592 (1985)

Hay A. T., “Improvement in electrical protection for boilers,” U.S. Patent No. 140196, June 24 (1873)

Herzog R. E., Shi Q., Patil J. N., and Katz J. L., “Magnetic water treatment: the effect of iron on calcium carbonate nucleation and growth,” Langmuir, 5(3), 861-867 (1989)

Higashitani K., Kage A., and Katamura S., “Effect of magnetic field on formation of CaCO3 particles,” Journal of Colloid and Interface Science, 156(1), 90-95 (1993)

Hu Z., and Deng Y., “Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants,” Journal of Colloid and Interface Science, 266(2), 359-365 (2003)

Hu Z., and Deng Y., “Synthesis of needle-like aragonite from calcium chloride and sparingly soluble magnesium carbonate,” Powder Technology, 140(1-2), 10-16 (2004)

Kamhi S. R., “On the structure of vaterite, CaCO3,” Acta Crystallographica, 16(8), 770-772 (1963)

Kirgintsev A. N., “Mechanism of the magnetic treatment of liquids,” Russian Journal of Physical Chemistry, 45(4), 477-478 (1971)

Klein C., and Dutrow B., “The 23rd Edition of the Manual of Mineral Science,” John Wiley & Sons, Hoboken (2008)

Kobe S., Dražić G., Cefalas A. C., Sarantopoulou E., and Stražišar J., “Nucleation and crystallization of CaCO3 in applied magnetic fields,” Crystal Engineering, 5(3-4), 243-253 (2002)

Kobe S., Dražić G., McGuiness P. J., and Stražišar J., “The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device,” Journal of Magnetism and Magnetic Materials, 236(1-2), 71-76 (2001)

Kojima Y., Sadotomo A., Yasue T., and Arai Y., “Control of crystal shape and modification of calcium carbonate prepared by precipitation from calcium hydrogencarbonate solution,” Journal of the Ceramic Society of Japan, 100(1165), 1128-1135 (1992)

Koutsoukos P. G., “Polymorphism in the calcium carbonate system,” In 12th Industrial Crystallization, Warsaw, Poland, 2-115–2-121 (1993)

Kralj D., and Brečević L., “Dissolution kinetics and solubility of calcium carbonate monohydrate,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 96(3), 287-293 (1995)

Kronenberg K. J., “Experimental evidence for effects of magnetic fields on moving water,” IEEE Transactions on Magnetics, Mag-21(5), 2059-2061 (1985)

Kusik C. L., and Meissner H. P., “Vapor pressures of water over aqueous solutions of strong electrolytes,” Industrial and Engineering Chemistry Process Design and Development, 12(1), 112-115 (1973)

Lowell P. S., Ottmers D. M., Schwitzgebel K., Strange T. I., and Deberry D. W., “A theoretical description of the limestone injection - wet scrubbing process,” PB 193-029, U.S. Environmental Protection Agency, I, 60-78. (1970)

Miers H. A., “An enquiry into the variation of angles observed in crystals; especially of potassium-alum and ammonium-alum,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 202, 459-523 (1904)

Mullin J. W., “Crystallization,” 2nd Edition, Butterworth-Heinemann, Oxford (1972)

Narasiah K. S., “Magnetic treatment of water – a solution to prevent corrosion,” Water Pollution Control, 108(6), 34-37 (1970)

Nielsen A. E. and Toft J. M., “Electrolyte crystal growth kinetics,” Journal of Crystal Growth, 67(2), 278-288 (1984)

Parsiegla K. I., and Katz J. L., “Calcite growth inhibition by copper (II) I. Effect of supersaturation,” Journal of Crystal Growth, 200(1-2), 213-226 (1999)

Parsons S. A., Judd S. J., Stephenson T., Udol S., and Wang B. L., “Magnetically augmented water treatment,” Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 75(2), 98-104 (1997)

Parsons S. A., Wang B. L., Judd S. J., and Stephenson T., “Magnetic treatment of calcium carbonate scale - effect of pH control,” Water Research, 31(2), 339-342 (1997)

Pitzer K. S., and Mayorga G., “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” The Journal of Physical Chemistry, 77(19), 2300-2308 (1973)

Plummer L. N., and Busenberg E., “The solubilities of calcite, aragonite, and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O,” Geochimica et Cosmochimica Acta, 46(6), 1011-1040 (1982)

Prencipe M., Pascale F., Zicovich-Wilson C. M., Saunders V. R., Orlando R., and Dovesi R., “The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation,” Physics and Chemistry of Minerals, 31(8), 559-564 (2004)

Robinson R. A., and Stokes R. H., “Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes,” 2nd edition, Butterworths, London (1959)

Roques H. and Girou A., “Kinetics of the formation conditions of carbonate tartars,” Water Research, 8(11), 907-920 (1974)

Sabbides T. G., and Koutsoukos P. G., “The crystallization of calcium carbonate in artificial seawater; role of the substrate,” Journal of Crystal Growth, 133(1-2), 13-22 (1993)

Söhnel O., and Garside J., “Precipitation: Basic Principles and Industrial Applications,” Butterworth-Heinemann, Oxford (1992)

Söhnel O. and Mullin J., “Precipitation of calcium carbonate,” Journal of Crystal Growth, 60(2), 239-250 (1982)

Stubičar N., Marković B., Tonejc A., and Stubičar M., “Crystal growth of lead fluoride phases using the constant composition method: III. Effect of pH and ionic strength,” Journal of Crystal Growth, 130(1-2), 300-304 (1993)

Stubičar N., Ščrbak M., and Stubičar M., “Crystal growth of lead fluoride using the constant composition method: II. The effect of Pb/F activity ratio on the kinetics of crystal growth,” Journal of Crystal Growth, 100(1-2), 261-267 (1990)

Tai C. Y., and Pan R. K., “Growth kinetics of copper sulfate pentahydrate crystal in pure and impure systems,” Journal of the Chinese Institute of Chemical Engineers, 16(4), 379-387 (1985)

Tai C. Y., and Lin C. H., “Crystal growth kinetics of the two-step model,” Journal of Crystal Growth, 82(3), 377-384 (1987)

Tai C. Y., Chen P. C., and Shih S. M., “Size-dependent growth and contact nucleation of calcite crystals,” AIChE Journal, 39(9), 1472-1482 (1993)

Tai C. Y., “Crystallization kinetics revealed from experimental data analyzed by the two-step growth model,” Journal of Chemical Engineering of Japan, 30(3), 373-381 (1997)

Tai C. Y., and Chen F. B., “Polymorphism of CaCO3 precipitated in a constant-composition environment,” AIChE Journal, 44(8), 1790-1798 (1998)

Tai C. Y., Chien W. C., and Chen C. Y., “Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer,” AIChE Journal, 45(8), 1605-1614 (1999)

Tai C. Y., Chang M. C., Wu C. K., and Lin Y. C., “Interpretation of calcite growth data using the two-step crystal growth model,” Chemical Engineering Science, 61(16), 5346-5354 (2006)

Tai C. Y., Wu C. K., and Chang M. C., “Effects of magnetic field on the crystallization of CaCO3 using permanent magnets,” Chemical Engineering Science, 63(23), 5606-5612 (2008)

Tai C. Y., Chang M. C., Shieh R. J., and Chen T. G., “Magnetic effects on crystal growth rate of calcite in a constant-composition environment,” Journal of Crystal Growth, 310(15), 3690-3697 (2008)

Takasaki S., Parsiegla K. I., and Katz J. L., “Calcite growth and the inhibition effect of iron (III),” Journal of Crystal Growth, 143(3-4), 261-268 (1994)

Tang H., Yu J., Zhao X., and Ng D. H. L., “Creation of calcite hollow microspheres with attached bundles of aragonite needles,” Crystal Research and Technology, 43(5), 473-478 (2008)

Tebenikhin E. F., and Gusev B. T., “Effect of a magnetic field on scale-forming agents,” Chemical Abstracts, 70(4), 15387 (15385y) (1969)

Tomson M. B., and Nancollas G. H., “Mineralization kinetics: a constant composition approach,” Science, 200(4345), 1059-1060 (1978)

Wray J. L. and Daniels F., ”Precipitation of calcite and aragonite,” Journal of the American Chemical Society, 79(9), 2031-2034 (1957)

Zemaitis J. F., Clark D. M., Rafal M., and Scrivner N. C., “Handbook of Aqueous Electrolyte Thermodynamics: Theory and Application,” Wiley-AIChE, New York (1986)

曹志明,「氟化鈣結晶動力學之研究」,碩士學位論文,台大化工所 (1994)

陳仲裕,「碳酸鈣在流體化床中成長動力學之研究」,碩士學位論文,台大化工所 (1995)

陳復邦,「以定組成法探討碳酸鈣多晶型之形成」,碩士學位論文,台大化工所 (1995)

洪明傑,「以定組成法探討微溶物系晶體之成長」,碩士學位論文,台大化工所 (1996)

盧莊鴻,「以定組成法量測碳酸鈣晶體之成長速率」,碩士學位論文,台大化工所 (1996)

彭永弘,「磁場對碳酸鈣在流體化床中成長動力之研究」,碩士學位論文,台大化工所 (1997)

吳志高,「磁場對碳酸鈣晶體成長速率之影響」,碩士學位論文,台大化工所 (2002)

謝榮忠,「商用磁能防垢器對碳酸鈣結晶之影響」,碩士學位論文,台大化工所 (2004)

林彥志,「溶液性質對碳酸鈣晶體成長之影響」,碩士學位論文,台大化工所 (2005)

葉士瑋,「磁場對攪拌槽中文石成長速率的影響」,碩士學位論文,台大化工所 (2007)

施雅齡,「磁場與雜質對文石成長速率之競爭作用」,碩士學位論文,台大化工所 (2008)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊