跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承翰
研究生(外文):Cheng-Han Yang
論文名稱:以金奈米粒子修飾3-(三氟甲基)苯基硫醇結合白鳳豆凝集素運用於偵測蛋白質間作用力與乳腺癌细胞的顯像
論文名稱(外文):Detection of Protein-Protein Interactions and Imaging MCF-7 Cells with (3-(2,2,2-Trifluoroethyl)phenyl)me- thanethiol-ConA Capped Gold Nanoparticles
指導教授:陳昭岑
指導教授(外文):Chao-Tsen Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:176
中文關鍵詞:金奈米粒子白鳳豆凝集素蛋白質間作用力
外文關鍵詞:Gold NanoparticlesConcanavalin AProtein-Protein Interactions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究重點是利用化學修飾的方法將醣結合蛋白修飾於不同粒徑的金奈米粒子,探討及評估其應用於檢測蛋白質交互作用及乳癌細胞造影的可能性。利用具有光親和性配基 8 的甘露糖分子與白鳳豆凝集素有專一性結合能力,將光親和性配基 8 帶到白鳳豆集素表面。再透過光照反應,使光親和性配基 8 的光反應基團以共價鍵結固定在白鳳豆凝集素的表面,接著將甘露糖分子移除,即可得到表面具有硫醇官能基的白鳳豆凝集素(SH-ConA)。SH-ConA 和作為辨識訊號輸出單元的 32 nm金奈米粒間可藉由連接分子(linker)結合。在此,我們也設計了幾種功能性及非功能性的連接端分子,功能性連接端(Linker MMUA 和 Linker MTA),帶有馬來醯亞胺順丁烯二醯亞胺(Maleimide),經過硫醇的加成之後會形成穩定的硫醚鍵,用來與 SH-ConA 作用;非功能性連接端(Linker DO、Linker DOEG 和 Linker DA)則是用來稀釋功能性連接端在金奈米粒子表面的濃度。將兩者以不同比例修飾在金奈米粒子上。我們發現非功能性連接端能夠藉由親水性和帶電荷的多寡幫助金奈米粒子均勻分佈在水溶液中。當修飾 Linker DA 時,金奈米粒子排斥的效果最好。在蛋白質交互作用實驗中,利用金奈米粒子的電漿共振光譜吸收的變化,我們成功地找出適當氯化鈉水溶液的濃度,使 ConA-GNP-MTA 表面電荷中和而能與 BS-I 作用,但是對其它蛋白質選擇性不如預期。應用相同的化學修飾策略,我們也成功地將 SH-ConA 修飾在1.2 nm的螢光奈米金上(ConA-Audot-MTA),希冀 ConA-Audot-MTA 與乳癌細胞(MCF-7)表面過度表現的甘露糖分子作用,而達到細胞顯影的目的。但是 ConA-Audot-MTA 在細胞實驗的條件下,有聚集的現象,使得細胞顯影結果不盡理想。所以未來希望可藉由改變連接端分子或輸出端分子的特性來達到偵測的目的。
The objective of this thesis is to develop a chemical method to immobilize sugar binding proteins onto gold nanoparticles with different sizes as well as to investigate the possibilities of using the resultant proteins-capped gold nanoparticles in screening protein/protein interactions and imaging surface tomography of breast cancer cells. The cognate substrate of ConA appended with 3-(trifluoroethyl)-3- phenyldiazirine was synthesized and the resultant photoaffinity ligand 8 was introduced to the surface of ConA based on the characteristics of ConA’s specific substrate binding and photo-activated labeling. By removing 8, ConA not only displaying the surface thiol groups (denoted as SH-ConA) but also possessing the free binding site for the mannose are thus generated. The structural features of linkers play some roles in the dispersion of gold nanoparticles. Thus, we design and synthesize some functional (namely Linker MMUA and Linker MTA) linkers with maleimide functionality and nonfunctional (Linker DO, Linker DOEG and Linker DA) linkers. SH-ConA is chemically modified to 32-nm gold nanoparticles by reacting with maleimide of functional linkers via 1,4-addition yielding ConA-GNP-MTA. Nonfunctional linkers not only dilute the concentration of functional linkers on the gold nanoparticle surface, but also increase the repulsion among gold nanoparticle by hydrophilicity and charge density. Based on experimental observation, the best linker to serve our purposes is Linker DA. By monitoring the changes of plasmon resonance absorption bands of gold nanoparticles, we successfully find the optimal concentration of sodium chloride solution, which can neutralize surface charge of ConA-GNP-MTA, for ConA-GNP-MTA to interact with BS-I in the protein-protein interaction experiment. However, the selectivity of ConA-GNP-MTA to other proteins is not as good as what we expected. Applying the same immobilization strategy, SH-ConA successfully encapsulates 1.2-nm gold nanodots, which fluoresce strongly in aqueous solution. The resultant ConA-Audot-MTA is thus evaluated in the application of MCF-7 breast cancer cells imaging. However, ConA-Audot-MTA aggregates under the cell imaging experiment condition. The experiment results could be possibly improved by changing the signal transduction unit or characteristic features of linkers.
目錄…………………………………………………………………I
圖目錄………………………………………………………………III
表目錄………………………………………………………………VIII 簡稱用語對照表……………………………………………………X
中文摘要……………………………………………………………XII
英文摘要……………………………………………………………XIII 第一章 蛋白質表面修飾及固定化於固相載體之研究………………1 1.1 感測分子的組成與原理………………………………………… 1 1.2 螢光蛋白質生物感測分子之介紹……………………………… 2 1.3 生物分子固定於奈米粒子之研究………………………………10 1.3.1 靜電吸引力……………………………………………………11 1.3.2 化學吸附………………………………………………………14 1.3.3 接受器-配基專一性作用力………………………………… 14 1.3.4 共價鍵結………………………………………………………16 第二章 醣類與外源凝集素………………………………………… 25 2.1 醣類生物學之簡介………………………………………………25 2.2 醣類在生物體內的重要性………………………………………26 2.3醣類與受體的專一性結合……………………………………… 28 2.3.1 專一性結合……………………………………………………28 2.3.2 多價性作用(multivalent)……………………………… 29 2.4 外源凝集素 (lectin) 的源由…………………………………32 2.5 金奈米粒子之簡介………………………………………………33 2.6 金奈米粒子之特性………………………………………………34 2.7 金奈米粒子應用於分子辨識的介紹……………………………35 2.8 研究蛋白質間作用力之方法……………………………………39
第三章 利用白鳳豆凝集素修飾金奈米粒子偵測蛋白質間作用力 41 3.1利用 ConA-GNP 偵測蛋白質間作用力的設計理念…………… 41 3.2白鳳豆凝集素修飾金奈米粒子生物感應分子之合成策略…… 41 3.2.1 分子辨識單元之白鳳豆凝集素的修飾………………………42 3.2.2 光親和性配基 8 的合成…………………………………… 46 3.2.3 合成光親和性配基 8 修飾白鳳豆凝集素………………… 50 3.3 連接端的合成策略及合成方法探討……………………………57 3.3.1 連接端的合成策略探討………………………………………57 3.3.2 連接端的合成方法探討………………………………………62 3.4 訊號轉換單元之 32 nm金奈米粒子的合成……………………66 3.5 不同的連接端修飾金奈米粒子合成方法………………………67 3.6 SH-ConA 固定化於連接端修飾金奈米粒子之合成方法………71 3.6.1 SH-ConA 以共價鍵結固定化於連接端修飾 32 nm金奈米粒子
…………………………………………………………………71
3.6.2 ConA以吸附方式固定化於未修飾的金奈米粒子……………72 3.6.3 計算固定到金奈米粒子表面ConA的量………………………74 3.7 利用 ConA-GNP 與 ConA-GNP-MTA 與 BS-I 作用……………75 3.8 結論………………………………………………………………81 第四章、利用 ConA-GNP-MTA 偵測細胞表面醣以及利用白鳳豆凝集素修飾金量 子點(ConA-Audot-MTA)於 MCF-7 細胞顯影…………82 4.1 外源凝集素的構造及作用機制…………………………………82 4.2 外源凝集素的生物活性及功能…………………………………83 4.3 利用凝集素研究細胞表面醣類分佈之研究……………………85 4.4 利用 ConA-GNP-MTA 偵測細胞表面醣…………………………91 4.5 利用白鳳豆凝集素修飾金量子點於 MCF-7 細胞顯影……… 94 4.6 結論………………………………………………………………96 實驗部分………………………………………………………………97
壹、一般敘述…………………………………………………………97 貳、實驗步驟及光譜數據……………………………………………99 參考文獻………………………………………………………………127 附錄…………………………………………………………………..136
1.Fluorescent Chemosensors For Ion and Molecule
Recognition; Czarnik, A. W. ed.; American Chemical
Society: Washington, DC, 1992.
2.Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew. Chem. 1
997, 109, 911-914; Angew. Chem. Int. Ed. 1997, 36, 862-865.
3.Giuliano, K. A.; Taylor , D. L. Trends in Biotechnology 1998, 16, 135-140.
4.(a) Czarnik, A. W. Acc. Chem. Res. 1994, 27, 302-308. (b) de Silva, A. P. Gunaratne, H. Q.; Gunnlaugsson, N. T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515-1566.
5.(a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Angew. Chem. 1996, 108, 2038-2050; Angew. Chem. Int. Ed. 1996, 35, 1910-1922. (b) Chen, C. -T.;
Wagner, H.; Still, W. C. Science 1998, 279, 851-853. (c) Sugasaki, A.; Sugiyasu, K.; Ikeda, M.; Takeuchi, M.; Shinkai, S. J. Am. Chem. Soc. 2001, 123,
10239-10244.
6.(a) Hellinga, H. W.; Marvin, J. S. Trends Biotechnol. 1998, 16, 183-189. (b) Hirshberg, M.; Henrick, K.; Haire, L. L.; Vasisht, N.; Brune, M.; Corrie, J. E. T.; Webb, M. R. Biochemistry 1998, 37, 10381-10385. (c) Cotton, G. J.; Ayers, B.; Xu, R.; Muir, T. W. J. Am. Chem. Soc. 1999, 121, 1100-1101. (d) Hamachi, I.; Eboshi, R.; Watanabe, J.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 4530-4531.; (e) Morii, T.; Sugimoto, K.; Makino, K.; Otsuka, M.; Imoto, K.; Mori, Y. J. Am. Chem. Soc. 2002, 124, 1138-1139.
7.Jonathan, S. M.; Hellinga, H. W. J. Am. Chem. Soc. 1998, 120, 7-11.
8.Sydor, J. R.; Herrmann, C.; Kent, S. B. H.; Doody, R. S.; Engelhard, M.
Proc. Nat. Acad. Sci. USA 1999, 96, 7865-7870.
9.Rich, R. L. ; Smirnov, A. V.; Schwabacher, A. W.; Petrich, J. W. J. Am. Chem. Soc. 1995, 117, 11850-11853.
10.Miyawaki, A.; Llopis, J.; Heim, R.; McCaffery, J. M.; Adams, J. A.; Ikura, M.; Tsien, R. Y. Nature 1997, 388, 882-887.
11.Romoser, V. A.; Hinkle, P. M.; Persechini, A. J. Biol. Chem. 1997, 272, 13270-13274.
12.Chen, G.; Heim, A.; Riether, D.; Yee, D.; Milgrom,Y.; Gawinowicz, M. A.; Sames, D. J. Am. Chem. Soc. 2003, 125, 8130-8133.
13.Pollack, S. J.; Nakayama, G. R.; Schultz, P. G. Science 1988, 242, 1038-1040.
14.Hamachi, I.; Nagase, T.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 12065-12066.
15.Takaoka, Y.; Tsutsumi, H.; Kasagi, N.; Nakata, E.; Hamachi, I. J. Am. Chem. Soc. 2006, 128, 3273-3280.
16.Koshi, Y.; Nakata, E.; Miyagawa, M.; Tsukiji, S.; Ogawa, T.; Hamachi, I. J. Am. Chem. Soc. 2008, 130, 245-251.
17.(a) Hofle, G.; Steglich, W.; Vorbruggen, H.; Angew. Chem. 1978, 90, 602- 615; Angew. Chem. Int. Ed 1978, 17, 569-583. (b) Bhattacharya, S.; Snehalatha, K. J. Chem. Soc. Perkins Trans. 1996, 2, 2021-2025.
18.Katz, E.; Willner , I.; Angew. Chem. 2004, 116, 6166-6235; Angew. Chem. Int. Ed. 2004, 43, 6042-6108.
19.(a) Hermanson, G. T.; Mallia, A. K.; Smith, P. K.; Immobilized Affinity
Ligand Techniques, Academic Press, London, 1992. (b) Taylor, R. F. Protein
Immobilization, Dekker, New York, 1990
20.Scouten, W. H.; Luong, J. H. T.; Brown, R. S. Trends Biotechnol. 1995, 13, 178 -185.
21.Shenton, W.; Davis, S. A.; Mann, S. Adv. Mater. 1999, 11, 449-452.
22.(a) Jensen, P. S.; Chi, Q.; Grumsen, F. B.; Abad, J.; Horsewell, A.; Schiffrin, D. J.; Ulstrup, J. J. Phys. Chem. C 2007, 111, 6124-6132. (b) Eve, M.; Tam, A.; Schifferli, K. H. Langmuir 2005, 21, 12080-12084. (c) Macdonald, I. D. G.; Smith, W. E. Langmuir 1996, 12, 706-713.
23.Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142-12150.
24.Hayat, M. A. Colloidal Gold: Principles, Methods, and Applications, Academic Press, New York, 1989.
25.Ghosh, S. S.; Kao, P. M.; McCue, A.W.; Chappelle, H. L. Bioconj.
Chem. 1990, 1, 71-76.
26.Gestwicki, J. E.; Strong, L. E.; Kisseling, L. L. Angew. Chem. 2000, 112, 4741-4744; Angew. Chem. Int. Ed. 2000, 39, 4567-4570.
27.Okano, K.; Takahashi, S.; Yasuda, K.; Tokinaga, D.; Imai, K.; Koga, M.
Anal. Biochem. 1992, 202, 120-125.
28.Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E. Langmuir 2000, 16, 3107-3118.
29.Connolly, S.; Fitzmaurice, D. Adv. Mater. 1999, 11, 1202-1205.
30.Tsai, C.-S.; Yu, T.-B.; Chen, C.-T. Chem. Commun. 2005, 4273-4275.
31.Patel, N.; Davies, M. C.; Hartshorne, M.; Heaton, R. J.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Langmuir 1997, 13, 6485-6490.
32.Choi, H. J.; Kimb, N. H.; Chung, B. H.; Seong, G. H. Anal. Biochem. 2005, 347, 60-66.
33.(a) Viitala, T.; Vikholm, I.; Peltonen, J. Langmuir 2000, 16, 4953-4961.
(b) Gauvreau, V.; Chevallier, P.; Vallieres, K.; Petitclerc, E.; Gaudreault, R. C.; Laroche, G. Bioconj. Chem. 2004, 15, 1146-1156.
34.Corey, D. R.; Munoz-Medellin, D.; Huang, A. Bioconj. Chem. 1995, 6, 93-100.
35.Masri, M.; Friedman, M. J. Protein Chem. 1988, 7, 49-54.
36.Fernandez-Lafuente, R.; Rosell, C. M.; Rodriguez, V.; Santana, C.; Soler, G.; Bastida, A.; Guisan, G. M Enzyme Microb. Technol. 1993, 15, 546-550.
37.Sigrist, H.; Collioud, A.; Clemence, J.; Gao, H.; Loginbuhl, R.; Sanger, M.; Sundarababu, G. Opt. Eng. 1995, 34, 2339-2348.
38.Collioud, A.; Clkmence, J.; Sanger, M.; Sigrist, H. Bioconj. Chem. 1993, 4, 528-536.
39.de Araffljo, A. D.; Palomo, J. M.; Cramer, J.; Kohn, M.; Schroder, M.; Wacker, R.; Niemeyer, C.; Alexandrov, K.; Waldmann, H.; Angew. Chem. 2006, 118, 302-307; Angew. Chem., Int. Ed. 2006, 45, 296-301.
40.Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Dirvianskyte, N.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J. M.; Rowan, A. E.; Brust, M. Bioconj. Chem. 2006, 17, 1373-1375.
41.Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007-2010.
42.(a) Melnyk, O.; Duburcq, X.; Olivier, C.; Urbes, F.; Auriault, C.; Gras-Masse, H. Bioconj. Chem. 2002, 13, 713-720. (b) Olivier, C.; Hot, D.; Huot, L.; Ollivier, N.; El-Mahdi, O.; Gouyette, C.; Huynh-Dinh, T.; Gras-Masse, H.; Lemoine, Y.; Melnyk, O. Bioconj. Chem. 2003, 14, 430-439.
43.Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. Bioconj. Chem. 2001, 12, 346-353.
44.Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T. J. Am. Chem. Soc. 2003, 125, 11790-11791.
45.Dwek, R. A.; Lellouch, A. C.; Wormald, M. R. J. Anatomy 1995, 187, 279.
46.Fischer, E. Ber. Dtsch. Chem. Ges. 1890, 23, 2114.
47.(a) Jentoft, N. Trends Biochem. Sci. 1990, 15, 291. (b) Berg, E. I.; Robinson, M.
K.; Warnock, R. A.; Butcher, E. C. J. Cell Biol. 1991, 114, 343. (c) Lasky, L. A. Science 1992, 258, 964. (d) Malhotra, R.; Taylor, N. R.; Bird, M. I. Biochem. J. 1996, 314, 297.
48.Somers, W. S.; Tang, J.; Shaw, G. D.; Camphausen, R. T. Cell 2002, 103, 467.
49.Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357-2363.
50.Geijtenbeck, Y.; Torensama, R.; van Vliet, S.; van Duijnhoven, G.; Adema, G.; van Kooyk, Y.; Figdor, C. Cell 2000, 100, 575-585.
51.Kansas, G. Blood 1996, 88, 3259-3287.
52.(a) Feizi, T. Carbohydr. Chem. Biol. 2000, 4, 851-860. (b) Gestwicki, J. E.; Kiessling, L. L. Nature 2002, 415, 81-84.
53.(a) Sacchettini, J. C.; Baum, L. G.; Brewer, C. F. Biochemistry 2001, 40, 3009-3015. (b) Ratner, D. M.; Adams, E. W.; Disney, M. D. Seeberger, P. H. ChemBioChem 2004, 5, 1375-1383.
54.Mammen, M.; Choi, S. K.; Whitesides, G. M.; Angew. Chem. 1998, 110,
2908-2953.; Angew. Chem. Int. Ed. 1998, 37, 2754-2794.
55.Sears, P; Wong, C. H. Cell. Mol. Life Sci. 1998, 54, 223-252.
56.Kiessling, L. L.; Gestwicki, J. E.; Strong, L. E. Curr. Opin. In. Chem. Biol. 2000, 4, 696-703.
57.Sears, P; Wong, C. H. Angew. Chem. 1999, 111, 2446-2471; Angew. Chem. Int. Ed. 1999, 38, 2300-2324.
58.Weis, W. I.; Drickamer, K. Annu. Rev. Biochem. 1996, 65, 441-473.
59.Rose, I. A.; Hanon, K. R.; Wilinson, K. D.; Wimmer, M. J. Proc.Natl. Acad. Sci. USA 1980, 77, 2439-2441.
60.Varghese, J. N.; Caldwell, J. B.; Kortt, A. A.; Colman, P. M. Proteins Struct. Funct. Genet. 1992, 14, 327-332.
61.Weis, W. I.; Drickamer, K.; Hendrickson, W. A. Nature 1992, 360, 127-134.
62.(a) Eue, I.; Kauschke, E.; Mohrig, W.; Cooper, E. L. Dev. Comp. Immunol. 1998, 22, 13-25. (b) Boyd, W.; Brown, R. Nature 1965, 280, 584-593.
63.(a) Ooi, L. S. M.; Ng, T. B.; Geng, Y.; Ooi, V. E. C. Biochem. Cell Biol. 2000, 78, 463-468. (b) Wang, H.; Ng, T. B.; Ooi, V. E. C. Mycol. Res. 1998, 102, 897-906.
64.(a) Sampaio, A. H.; Rogers, D. J.; Barwell, C. J. Phytochemistry 1998, 48, 765-769. (b) Mitsuru, J.; Taishi, Y.; Kazuhiko, K.; Kanae, K.; Ryuichi, S.; Koji, M. Comp. Biochem. Physiol. 2000, 127B, 227-236.
65.Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
66.Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem. Soc. 2003, 125, 1643-1654.
67.Storhoff, J. J.; Lazarides, A. A.; Mucic, R. C.; Mirkin, C. C.; Letsinger, R. L.; Schatz, G. C. J. Am. Chem. Soc. 2000, 122, 4640-4650.
68.Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 8226-8230.
69.Goeldner, M.; Kotzyba-Hibert, F.; Kapfer, I.; Angew. Chem. 1988, 100, 117-162; Angew. Chem. Int. Ed. 1995, 34, 1296-1300.
70.國立臺灣大學理學院化學研究所博士論文 蔡長昇撰 2006.7.
71.(a) Fields, S.; Song, O. Nature 1989, 340, 245-246. (b) Stephens, D. J.; Bantingb, G. Traffic 2000, 1, 763–768.
72.Massade, L.; Navarro, S.; Krummrei, U.; Reeves, R.; Beaune, P.; Barouki, R. Biochemistry 2002, 41, 2760-2768.
73.Lakey, J. H.; Raggett, E. M. Curr. Opin. Struct. Biol. 1998, 8, 119-123.
74.Boulton, S. J.; Vincent, S.; Vidal, M. Curr. Opin. Chem. Biol. 2001, 5, 57-62
75.Sigal, G. B.; Mrksich, M.; Whitesides, G. M. Langmuir 1997, 13, 2749-2755.
76.Zhu, H. Science 2001, 293, 2101-2105.
77.Yeo, W.-S.; Min, D.-H.; Hsieh, R. W.; Greene, G. L.; Mrksich, M. Angew. Chem. Int. Ed. 2005, 44, 5480-5483.
78.Sharon, N.; Lis, H. Chem. Rev. 1998, 98, 637-674.Frens, G. Nature 1973, 241, 20-22.
79.Yamamoto, N.; Bernardi, F.; Olivucci, M.; Robb, M. A.; Wilsey, S. J. Am. Chem. Soc. 1994, 116, 2064-2074.
80.Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whiteside, G. M. Langmuir 2001, 17, 5605-5620.
81.Frens, G. Nature 1973, 241, 20-22.
82.Lee, K.-H.; Chen, S.-J.; Jeng, J.-Y.; Cheng, Y.-C.; Shiea, J.-T.; Chang, H.-T. Journal of Colloid and Interface Science 2007, 307, 340-348.
83.Concanavalin A from Canavalia ensiformis (Jack bean) http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/C2010
84.Peumans, W. J.; Van Damme, E. J. Plant Physiol. 1995, 109, 347-352.
85.Van Parijs, J.; Broekaert, W. F.; Glodstein, I. J.; Peumans, W. J. Planta 1991, 183, 258-262.
86.Sharon, N.; Lis, H. Chem. Rev. 1998, 98, 637-674.
87.Vijayan, M.; Chandra, N. Curr. Opin. Struct. Biol. 1999, 9, 707-714.
88.Wolpert, J. S.; Albersheim, P. Biochem. Biophys. Res. Commun. 1976, 90, 729-757.
89.Sueyoshi, S.; Tsuji, T.; Osawa, T. Biol. Chem. Hoppe-Seyler 1985, 366, 213-221.
90.Shoham, J.; Inbar, M.; Sachs, L. Nature 1970, 227, 1244-1246.
91.Ozanne, B.; Sambrook, J. Nature New Biology 1971, 232, 156-160.
92.Friberg, S.; Cocnran, A. J.; Colub, S. H. Nature New Biology 1971, 232, 121-122.
93.Inbar, M.; Ben-Bassat, H.; Sachs, L. Int. J. Canaer 1972, 9, 143-149.
94.Sharon, N.; Lis, H. Science 1972, 177, 949-959.
95.Zheng, T.; Peelen, D.; Smith, L. M. J. Am. Chem. Soc. 2005, 127, 9982-9983.
96.Koshi, Y.; Nakata, E.; Yamane, H.; Hamachi, I. J. Am. Chem. Soc. 2006, 128, 10413-10422.
97.Zhelev, Z.; Ohba, H.; Bakalova, R.; Jose, R.; Fukuoka, S.; Nagase, T.; Ishikawa, M.; Baba, Y. Chem. Commun. 2005, 1980-1982.
98.Ding, L.; Cheng, W.; Wang, X.; Ding, S.; Ju, H. J. Am. Chem. Soc. 2008, 130, 7224-7225
99.Dulaney, J. T. Anal. Biochem. 1979, 99, 254-267.
100.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
101.國立臺灣大學理學院化學研究所博士論文 林佑忠撰 2007.10.
102.Chung , B.-H. Anal. Chem. 2007, 79, 546-556.
103.Belser, T.; Stohr, M.; Pfaltz, A. J. Am. Chem. Soc. 2005, 127, 8720-8731.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top