1.A. Di Paolo, L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions”, Colloids and Surfaces A: Physicochem. Eng. Aspects 317 (2008) 366-376.
2.高濂, 鄭珊, 張青紅, “奈米光觸媒”, 五南出版社 (2004), 台北.
3.A.L. Linsebigler, G. Lu and J.T. Yate. Jr., “Photocatalysis on TiO2 surface: principles, mechanism, and selected results” Chem. Rev. 95 (1995) 735.
4.黃冠群, “含鈦孔洞物質之合成、結構特性與催化反應”, 碩士論文, 國立台灣大學化學系 (2003), 台北.5.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of titanium oxide nanotube”, Langmuir 14 (1998) 3160.
6.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater. 11 (1999) 1307.
7.W.Q. Han, O. Gang, “Fe-doped Trititanate Nanotubes: Formation, Optical and Magnetic Properties, and Catalytic Applications”, J. Phys. Chem. C 111 (2007) 14339-14342.
8.C. Adán, M.-Arias, “Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation”, Appl. Catal. B: Environmental 72 (2007) 11-18.
9.N. Asong, M. J. Shultz, “The effect of iron doping on the adsorption of methanol on TiO2 probed by sum freqency generation”, Chem. Phys. 339 (2007) 86-93.
10.劉春艷, “納米光催化及光催化環境淨化材料”, 化學工業出版社 (2008), 北京.
11.A. Pottier, J.P. Jolivet, “Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media”, J. Mater. Chem. 11 (2001) 1116-1121.
12.K.J. Jiang, S. Yanagida, “Dye-sensitized Solar Cell Using Brookite Nanoparticle TiO2 Films as Electrodes”, Chem. Lett. 9 (2002) 872-873.
13.M. Addamo, L. Palmisano, “Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films”, Chem. Commun. (2006) 4943-4945.
14.J.G. Li, X.D. Sun, “Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions: Phase-Selective Synthesis and Physicochemical Properties”, J. Phys. Chem. C 111 (2007) 4969-4976.
15.I.N. Kuznetsova, A. Kanaev, “TiO2 pure phase brookite with preferred orientation, synthesized as a sin-coated film”, Mater. Lett. 59 (2005) 3820-3823.
16.T. Nagase, T. Ebina, T. Iwasaki, H. Hayashi, Y. Onodera, M. Chatterjee, “Hydrothermal synthesis of brookite”, Chem. Lett. (1999) 911-912.
17.Y.Q. Zheng, E.W. Shi, S.X. Cui, W.J. Li, X.F. Hu, “ Hydrothermal preparation of nanosized brookite powder”, J. Am. Ceram. Soc. 83 (2000) 10 2634-36.
18.I. Keesmann, “Hydrothermal Synthesis of Brookite”, Z. Anorg. Allg. Chem. 346 (1966) 30-43
19.Q.X. Deng, M.D. Wei, K.M. Wei, “Brookite-type nanotubes”, Chem. Commun. (2008) 3657-3659.
20.張正華, 李陵嵐, 葉楚平, 楊平華, “有機與塑膠太陽能電池”, 五南出版社, (2007), 台北.
21.H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature 261 (1976) 402-403.
22.B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353 (1991) 737-740.
23.Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys. 25 (2006) 638-640.
24.M. Grätzel, “Photoelectrochemical cells”, Nature 414 (2001) 338-344.
25.杉原秀樹, 荒川裕則, “色素増感太陽電池用酸化チタン(The light scattering TiO2 particle for the dye-sensitized solar cell)”, Technical Report (2005).
26.M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A 164 (2004) 3-14.
27.N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 (1999) 3308-3314.
28.M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B 107 (2003) 8981-8987.
29.S. Hore, C. Vetter, A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells”, Sol. Energy Mater. & Sol. Cells 90 (2006) 1176-1188.
30.N. M. Lawandy, R. M. Balachandran, A.S.L. Gomes, E. Sauvain, “Laser action in strongly scattering media”, Nature 368 (1994) 436-438.
31.C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc. 80 (1997) 3157-3171.
32.S. Ito, S. M Zakeeruddin, M. Grätzel, “High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness”, Adv. Mater. 18 (2006) 1202-1205.
33.H.J. Koo, Y.J. Kim, N.G. Park, “Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells”, Adv. Mater. 20 (2008) 195-199.
34.A. Fujishima, K. Honda, “Electrochemical photolysis at a semiconductor electrode”, Nature (1972) 37 238.
35.J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy 32 (2007) 2609-2629.
36.L. R. Sheppard, J. Nowotny, “Materials for photoelectrochemical energy conversion”, Adv. Appl. Cera. 106 (2007) 1–2.
37.S. Khan, M. Al-Sahary, W B Ingler, “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”, Science 297 (2002) 2243-2245.
38.G. K. Mor, C. A. Grimes, “Vertically Oriented Ti-Fe-O Nanotube Array Films: Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis”, Nano Lett. 7 (2007) 8.
39.M. Paulose, G. K. Mor, C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays”, J. Photochem. Photobio. A: Chemistry 178 (2006) 8-15.
40.C.J. Lin, W.Y. Yu, Y.T. Lu, S.H. Chien, “Fabrication of opened-end high-aspect-ratio anodic TiO2 nanotube film for photocatalytic and photoelectrocatalytic applications”, Chem. Comm. (2008) 6031-6033.
41.J.H. Lee, Y.S. Yang, “Synthesis of TiO2 nanoparticles with pure brookite at low tempeature by hydrolysis of TiCl4 using HNO3 solution”, J. Mater. Sci. 41 (2006) 557-559.
42.A. Mills, J. Wang, “Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?” Journal of Photochem. Photobio. A: Chemistry 127 (1999) 123.
43.A. Zaban, M. Greenshtein, J. Bisquert, “Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements”, ChemPhysChem 4 (2003) 859-864.
44.J. Bisquert, V. Vyacheslav, S. Vikhrenko, “Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells”, J. Phys. Chem. B 108 (2004) 2313-2322.
45.J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Sero, “Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method”, J. Am. Chem. Soc. 126 (2004) 13550-13559.
46.F. Fabregat-Santiago, J. García-Cañadas, E. Palomares, J. N. Clifford, S. A. Haque, J. R. Durrant, G. Garcia-Belmonte, J. Bisquert, “The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings”, J. Appl. Phys. 96 (2004) 6903-6907.
47.C. J. Lin, W. Y. Yu, S. H. Chien, “Effect of anodic TiO2 powder as additive on electron transport properties in nanocrystalline TiO2 dye-sensitized solar cells”, Appl. Phys. Lett. 91 (2007) 233120.
48.P. M. S. Monk. 『Fundamentals of Electroanalytical Chemistry』 8.2 『Electroanalytical Measurements Involving Impedance』 John Wiley & Sons Ltd. (2001)
49.M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B 110 (2006) 13872-13880.
50.J. J. Wu, G. R. Chen, H. H. Yang, C. H. Ku, J. Y. Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells”, Appl. Phys. Lett. 90 (2007) 213109.
51.L. Y. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett. 84 (2004) 2433-2435.
52.M. Grätzel, “Mesoscopic solar cells for electricity and hydrogen production from sunlight”, Chem. Lett. 34 (2005) 8-13.
53.A. Hagfeldt, S. Lindquist, “Photoelectrochemical studies of colloidal TiO2 films: The effect of oxygen studied by photocurrent transients”, J. Electroanaly. Chem. 381 (1995) 39-46.
54.M. Grätzel, “Molecular photovoltaics that mimic photosynthesis”, Pure Appl. Chem., 73 (2001) 459-467.
55.S.H. Lim, N. Phonthammachai, T. Liu and T.J. White, “X-ray absorption spectroscopy studies of phase transformations and amorphicity in nanotitania powder and silica-titania core shell photocatalysts”, J. Appl. Cryst. (2008) 41 1009-1018.
56.蕭光宏, “二氧化鈦微結構對染料敏化太陽能電池的影響”, 碩士論文, 國立台灣大學化學系 (2008), 台北.57.M. Yan, F. Chen and M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B 109 (2005) 8673-8678.
58.N.G. Park, A. J. Frank,” Dye-sensitized TiO2 Solar Cells: Structured and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4”, J. Phys. Chem. B 103 (1999) 3308-3314.
59.T. Watanabe, H. Hayashi and H. Imai, “Low-temperature preparation of dye-sensitized solar cells through crystal growth of anatase titania in aqueous solutions”, Sol. Energy Mater. & Sol. Cells 90 (2006) 640-648
60.K.J. Kim, K. D. Benkstein, and A. J. Frank, “ Characterization of Low-Temperature Annealed TiO2 Films Deposited by Precipitation from Hydrolyzed TiCl4 solutions”, Chem. Mater. 14 (2002) 1042-1047.