跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:於平
研究生(外文):Pyng Yu
論文名稱:金屬奈米材料中的超快現象
論文名稱(外文):Ultrafast Phenomenon in Metal Nanomaterials
指導教授:林聖賢林聖賢引用關係
指導教授(外文):Sheng-Hsien Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:141
中文關鍵詞:飛秒解析瞬態吸收技術超快聲子奈米
外文關鍵詞:Time-resolved transient absorption techniqueUltrafastphononnano
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們利用飛秒解析瞬態吸收的技術成功的觀測到銀奈米稜鏡中與稜鏡厚度有關的聲支頻-聲子模式,其中這兩種樣品具有差不多的大小31.4~31.6 nm,但是厚度分別是7.8 1.2和8.5 0.69 nm。利用這個技術我們發現奈米稜鏡中有兩種聲子模式。一種是跟稜鏡厚度有關的聲子,頻率介於7.81 cm-1 ~11.7 cm-1之間;另一種與稜鏡的高有關,頻率是介於1.95 cm-1和1.71 cm-1。另外,我們也探討了各種不同形狀的fcc金屬奈米粒子在飛秒雷射脈衝加熱後,結構的動態變化。我們利用Fermi-Pasta-Ulam和two-temperature模型分析包括:奈米尺度的薄膜、稜鏡、球、棒子、圓平面和金字塔等形狀。從這些結果我們可以解釋金屬奈米材料在雷射加熱後的結構動態變化、大小和形狀對振動周期和相位的影響。
Time-resolved transient absorption technique is used to investigate the thickness dependence of acoustic phonon modes of silver nanoprisms with two thicknesses, 7.8 1.2 and 8.5 0.69 nm, and a similar bisector length of 31.4~31.6 nm. Coherent acoustic phonon signals are observed. A new acoustic phonon frequency within 7.81 cm-1 ~11.7 cm-1 is found and this phonon mode is associated with the thickness of the nanoprism. Another phonon frequency between 1.95 cm-1 and 1.71 cm-1 is also observed, and its origin can be associated with the bisector length of the nanoprism.
We also examined photoinduced ultrafast structural dynamics such as coherent acoustic waves in many shapes of fcc metallic nanomaterials. Experimental data of nano-sized thin films, prisms, spheres, rods, disks and pyramids from transient optical absorption/reflectance measurements were analyzed based on a combined Fermi-Pasta-Ulam model and two-temperature model. This work elucidates the structural dynamics induced by femtosecond laser heating, its size and shape effects on the period and phase of the excited acoustic phonon modes.
Part I Ultrafast Spectroscopy Studies on Thicknesses Dependence of Acoustic Phonon Modes in Silver Nanoprisms
1. Introduction…………………………………………………………...……………(2)
2. Experimental section……………………………………………………………….(5)
2.1 Synthesis and characterizations…………………………………………...…..(5)
2.1.1 TEM grids preparation…………………………….……….……………(6)
2.2 Chemical role of H2O2…………………………………..…….………………(8)
2.3 Chemical role of PVP…………………….………………….………………(13)
2.4 Ultrafast laser system and simple principle……….……...…...……………..(19)
2.4.1 Ar laser………………………………………………….……..………..(19)
2.4.2 Mode locked Ti:sapphire laser and amplifier………………………..….(21)
2.4.3 Optical parametric amplifier 9400…………………...……..…………..(25)
2.5 Data acquisition…………………………………………….……………….(27)
2.5.1 Model SR830 DSP Lock-in amplifier………………………..…………(27)
2.6 Optical setup………………………………...………………...…………….(30)
2.7 Beam waist, depth of focus and Power dependence test………..………….(33)
2.8 Pulse measurement by autocorrelation………………………...……………(34)
2.9 Zero time point calibration…………………………………………………..(36)
2.10 Instrument control by LabVIEW………………………….….……………(38)
3. Results and Discussion…………………………………...…...………………….(42)
4. Conclusion…………………………………………………...…..……………….(47)
5. References…………………………………………………...……………………(53)
Part II Photoinduced Structural Dynamics in Laser-Heated Nanomaterials of Various Shapes and Sizes
1. Introduction…………………….…………………………………………………(56)
2. FPU-TTM Model……………………………………….…...……………………(57)
3. Analyses of the experimental data and discussion…………………..……………(68)
4. Conclusion……………………………………………….……………………….(78)
5. Appendix 1………………………………….…………….....……………………(83)
6. Reference………………………………………...………….…………………..(103)

Part III Surface Plasmon Resonance Energy Transfer in Metal Nanoparticles
1. Introduction………………….………………………………..…………………(106)
2. Theory…………………………………………………………….……………..(108)
2.1 Mie theory…………………………………...…………….……………….(108)
2.2 The size and wavelength dependent dielectric function…………..………(120)
2.3 The interband transitions and core effects in realistic metals…..…………(123)
2.4 Lifetime of the surface plasmon………………………………….….…….(124)
3. Experimental…………………………………………………….………………(126)
3.1 Methods for Synthesis of colloidal gold……………...……....……………(126)
4. Results and Discussion………………………………………….……..………..(127)
4.1 Absorption spectrum…………………………………….………...……….(127)
4.2 Interband and intraband excitation……………………..……..……………(128)
5. References…………………………………………………….…………………(139)
Part I
1. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. S. J. Phys. Chem. B 2006, 110, 7238.
2. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109.
3. Bastys, V.; Pastoriza-Santos, I.; Rodríguez-González, B.; Vaisnoras, R.; Liz-Marzán, L. M. Adv. Funct. Mater. 2006, 16, 766.
4. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
5. Hao, E.; Schatz, G. C.; Hupp, J. T. J. Fluoresce. 2004, 14, 331.
6. Singh, A.; Chaudhari, M.; Sastry, M. Nanotechology 2006, 17, 2399.
7. Zhang, J.; Li, X.; Sun, X.; Li, Y. J. Phys. Chem. B 2005, 109, 12544.
8. Metraux, G. S.; Mirkin, C. A. Adv. Mater. 2005, 17, 412.
9. Jin, R.; Cao, Y. C.; Hao, E.; Me´traux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.
10. Hao, E.; Schatz, G. C.; Hupp, J. T. J. Fluoresce. 2004, 14, 331.
11. Portales, H.; Saviot, L.; Duval, E.; Fujii, M.; Hayashi, S.; Del Fatti, N.; Vallée, F. J. Chem. Phys. 2001, 115, 3444.
12. Huang, W.; Qian, W.; El-Sayed, M. A.; Nano Lett. 2004, 4, 1741.
13. Hu, M.; Petrova, H.; Wang, X.; Hartland, G. V. J. Phys. Chem. B 2005, 109, 14426.
14. Bonacina, L.; Callegari, A.; Bonati, C.; van Mourik, F.; Chergui, M. Nano Lett. 2006, 6, 7.
15. Huang, W.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. B 2005, 109, 18881.
16. Zhang, J. M.; Shiu, Y. J.; Hayashi, M.; Liang, K. K.; Chang, C. H.; Gulbinas, V.; Yang, C. M.; Yang, T.-S.; Wang, H. Z.; Chen, Y.-T.; Lin, S. H. J. Phys. Chem. A 2001, 105, 8878.
17. Fatti, N. D.; Voisin, C.; Christofilos, D.; Valle´e, F.; Flytzanis, C. J. Phys. Chem. A 2000, 104, 4321.
18. Lai, W.M.; Rubin, D.; Krempl, E. Introduction to Continuum Mechanics; Pergamon: New York, 1993; pp. 251-253.

Part II
(1) Patel, C. K. N.; Tam, A. C. Rev. Mod. Phys. 1981, 53, 517-550.
(2) Rentzepis, P. M.; Pao, R. H. J. Chem. Phys. 1966, 44, 2931-2934.
(3) Fujimoto, J. G.; Liu, J. M.; Ippen, E. P.; Bloembergen, N. Phys. Rev. Lett. 1984, 53, 1837-1840.
(4) Eesley, G. L. Phys. Rev. B 1986, 33, 2144-2151.
(5) Thomsen, C.; Grahn, H. T.; Maris, H. J.; Tauc, J. Phys. Rev. B 1986, 34, 4129-4138.
(6) Brorson, S. D.; Fujimoto, J. G.; Ippen, E. P. Phys. Rev. Lett. 1987, 59, 1962-1965.
(7) Wright, O. B.; Kawashima, K. Phys. Rev. Lett. 1992, 69, 1668-1671.
(8) Sun, C.-K.; Vallée, F.; Acioli, L.; Ippen, E. P.; Fujimoto, J. G. Phys. Rev. B 1993, 48, 12365-12368.
(9) Hohlfeld, J.; Müller, J. G.; Wellershoff, S.-S.; Matthias, E. Appl. Phys. B 1997, 64, 387-390.
(10) Hartland, G. V. Annu. Rev. Phys. Chem. 2006, 57, 403-430.
(11) Hartland, G. V. J. Chem. Phys. 2002, 116, 8048-8055.
(12) Bonacina, L.; Callegari, A.; Bonati, C.; van Mourik, F.; Chergui, M. Nano Lett. 2006, 6, 7-10.
(13) Wang, J.; Guo, C. Phys. Rev. B 2007, 75, 184304.1-184304.5.
(14) Del Fatti, N.; Voisin, C.; Christofilos, D.; Vallée, F.; Flytzanis, C. J. Phys. Chem. A 2000, 104, 4321-4326.
(15) Huang, W.; Qian, W.; El-Sayed, M. A. Nano Lett. 2004, 4, 1741-1747; J. Phys. Chem. B 2005, 109, 18881-18888.
(16) Hu, M.; Petrova, H.; Wang, X.; Hartland, G. V. J. Phys. Chem. B 2005, 109, 14426-14432.
(17) Hu, M.; Wang, X.; Hartland, G. V.; Mulvaney, P.; Juste, J. P.; Sader, J. E. J. Am. Chem. Soc. 2003, 125, 14925-14933.
(18) Cavalleri1, A.; Siders, C. W.; Brown, F. L. H.; Leitner, D. M.; Tóth, C.; Squier, J. A.; Barty, C. P. J.; Wilson, K. R.; Sokolowski-Tinten, K.; Horn von Hoegen, M.; von der Linde, D.; Kammler, M. Phys. Rev. Lett. 2000, 85, 586-589.
(19) Lindenberg, A. M.; Kang, I.; Johnson, S. L.; Missalla, T.; Heimann, P. A.; Chang, Z.; Larsson, J.; Bucksbaum, P. H.; Kapteyn, H. C.; Padmore, H. A.; Lee, R. W.; Wark, J. S.; Falcone, R. W. Phys. Rev. Lett. 2000, 84, 111-114.
(20) Park, H.; Wang, X.; Nie, S.; Clinite, R.; Cao, J. Phys. Rev. B 2005, 72, 100301.1-100301.4.
(21) Tang, J. Appl. Phys. Lett. 2008, 92, 011901.1-011901.3.
(22) Jiang, L.; Tsai, H.-L. J. Heat Transfer 2005, 127, 1167-1173.
(23) Valette, S.; Harzic, R. L.; Huot, N.; Audouard, E.; Fortunier, R. Appl. Surf. Sci. 2005, 247, 238-242.
(24) Wright, O. B. Phys. Rev. B 1994, 49, 9985-9988.
(25) Perner, M.; Gresillon, S.; März, J.; von Plessen, G.; Feldmann, J.; Porstendorfer, J.; Berg, K.-J.; Berg, G. Phys. Rev. Lett. 2000, 85, 792-795.
(26) Achcroft, N. W.; Mermin, N. D. Solid State Physics (Philadelpha: Saunders College Press, 1976).
(27) Kriebig, U.; Vollmer, M. Optical Properties of Metal Clusters (Springer Press, New York, 1995).
(28) Groeneveld, H. M. R.; Sprik, R.; Lagendijk, A. Phys. Rev. B 1995, 51, 11433-11445.
(29) Atkins, P. W. Physical Chemistry (Oxford Univ. Press, New York, 2002).
(30) Petrova, H.; Lin, C.-H.; de Liejer, S.; Hu, M.; McLellan, J. M.; Siekkinen, A. R.; Wiley, B. J. J. Chem. Phys. 2007, 126, 094709.1-094709.8.
(31) Huang, W.; Qian, W.; Jain, P. K.; El-Sayed, M. A. Nano Lett. 2007, 7, 3227-3234.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊