跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀筑云
研究生(外文):Chu-Yun Chi
論文名稱:杏仁核在酬賞與逃避學習作業之角色:從神經元活性變化探討情緒記憶的穩固與提取
論文名稱(外文):The Role of Amygdala in Reward and Avoidance Learning: A Single-Unit Activity Study on Consolidation and Retrieval of Affective Memory
指導教授:梁庚辰梁庚辰引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:96
中文關鍵詞:情緒地點偏好神經細胞活性紀錄側化大鼠
外文關鍵詞:emotionplace preferencesingle-unit recordinglateralizationrats
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
杏仁核被認為是處理恐懼及焦慮記憶的重要神經結構,但其在處理酬賞行為上亦扮演重要角色,因此,杏仁核內的神經單元如何表徵正向與負向的情緒記憶成為一值得探討的議題。本研究利用抑制行逃避作業及酬賞所引發的地點偏好作業來探討此議題。在實驗一至實驗三於行為作業的訓練階段之前或之後給予河豚毒素抑制杏仁核的活動,或是於行為學習作業前毀除杏仁核,結果顯示壓抑或毀除杏仁核會有礙於兩項作業的學習。在實驗四中,我們進一步紀錄杏仁核在此兩項學習作業階段中神經元活性的變化,實驗結果顯示,在學習階段後,杏仁核內部分神經細胞分別表現出興奮性或是抑制性神經活動的變化,其中部分細胞甚至於學習階段後並經過一段等待時間才開始表現出神經細胞反應的變化。同時,在學習階段後亦發現杏仁核內神經細胞的反應變化有側化的現象。在學習測試階段中,雖然只有少數神經細胞表現出反應活性的改變,但這些神經細胞分別只對抑制型逃避作業或是酬賞作業表現出反應活性的變化,這顯示正向與負向情緒刺激分別由杏仁核內兩群不同的神經細胞負責處理。本研究證實正向或負向的情緒經驗記憶處理都需要杏仁核細胞的參與,但是正向與負向情緒經驗分別涉及不同的細胞。
The amygdala is well documented to mediate defensive behavior under fear and anxiety, but its role in appetitive behavior may be just as important according to the literature. A question arises whether the amygdala codes positive and negative stimuli in the same or different population of neurons. This study addressed this issue by examining involvement of the amygdala in an inhibitory avoidance task and a reward place preference task. In the first three experiments, we suppressed or lesioned the amygdala by microinfusion of tetrodotoxin or ibotenic acid before or after training on either task and verified that the amygdala was required to learn both tasks adopted. In the fourth experiment, the single unit activity was recorded from amygdala neurons at various phases of the two tasks we designed. It was shown that while some neurons responded with excitation or inhibition immediately after either one of the two tasks, other neurons did not change their firing rate unit a delay period of time. Furthermore, lateralized activation of the amygdala was detected after training. In the retention period, the individual responsive neurons also changed their firing rates either in the reward test or in the avoidance test and few neurons responded to both the reward and the avoidance tasks. Thus positive and negative stimuli were processed by two distinct populations of amygdala neurons. These findings shed lights on how the amygdala neurons represent various kinds of emotional experience.
中文摘要………………………………………………………………………………i
Abstract………………………………………………………………………………iii
Introduction…………………………………………………………………………..1
The multifactor-analytic theory of emotion……………………………………...2
The amygdala as a key structure involved in aversive memories………………..3
Amygdaloid neuronal activities in another form of aversive learning the
inhibitory avoidance task…………………………………………………….6
The role of amygdala in processing reward and positive reinforcement in
primates………………………………………………………………………9
The role of amygdala in processing reward and positive reinforcement in
rodents……………………………………………………………………....11
Differential processing of reward and positive reinforcement by amygdala
subnuclei in rodents…………………………………………………………12
Amygdala is related to the food-induced place preference tasks……………….14
The goals and strategies of this study…………………………………………...15
Material and Methods………………………………………………………………17
Subjects………………………………………………………………………....17
Drugs……………………………………………………………………………17
Surgery and drug administration………………………………………………..18
Recording electrode assembly and surgery for implantation microwires………20
Electrophysiological recordings………………………………………………...21
Single-unit spike sorting………………………………………………………..22
Reward place preference task…………………………………………………...25
Inhibitory avoidance task……………………………………………………….26
Histology………………………………………………………………………..27
Statistical analysis of behavior………………………………………………….28
Data analysis of unit activity……………………………………………………28
Experiments and Results…………………………………………………………...31
1. Effects of pre-training intra-amygdala infusion of tetrodotoxin (TTX) on the
conditioned place preference and inhibitory avoidance tasks………………31
2. Effects of post-training intra-amygdala infusion of TTX on the conditioned
place preference and inhibitory avoidance tasks……………………..…….35
3. Effects of amygdala lesions with ibotenic acid on conditioned place
preference and inhibitory avoidance tasks…………………………...……..42
4. Ensemble activity of amygdaloid neurons on conditioned place preference
and inhibitory avoidance tasks……………………………………………...49
Discussion…………………………………………………………………………..78
A suitable place preference task for reward learning…………………………..79
Stability of the recording units…………………………………………………81
Sparse coding in the amygdala for reward and aversive learning by different
population of neurons………………………………………………………82
Prolonged changes in neuronal activities in the post-training periods………….85
Lateralization of brain function in the amygdala……………………………….87
Future direction: Delineate the role of the amygdala in a temporal and spatial
network of affective memory……………………………………………….89
References…………………………………………………………………………...93
Ambroggi, F., Ishikawa, A., Fields, H. L., & Nicola, S. M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron, 59, 648-661.
Baldi, E., Lorenzini, C. A., & Bucherelli, C. (2004). Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiology of Learning and Memory, 81(3), 162-166.
Blundell, P., Hall, G., & Killcross, S. (2001). Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. Journal of Neuroscience, 21(22), 9018-9026.
Braesicke, K., Parkinson, J. A., Reekie, Y., Man, M. S., Hopewell, L., Pears, A., et al. (2005). Autonomic arousal in an appetitive context in primates: a behavioural and neural analysis. European Journal of Neuroscience, 21(6), 1733-1740.
Chang, C. H., Liang, K. C., & Yen, C. T. (2005). Inhibitory avoidance learning altered ensemble activity of amygdaloid neurons in rats. European Journal of Neuroscience, 21(1), 210-218.
Coleman-Mesches, K., & McGaugh, J. L. (1995a). Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Research 670, 75-81.
Coleman-Mesches, K., & McGaugh, J. L. (1995b). Muscimol injected into the right or left amygdaloid complex differentially affects retention performance following aversively motivated training. Brain Research, 676, 183-188.
Collins, D. R., & Paré, D. (2000). Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-). Learning and Memory, 7(2), 97-103.
Davidson, R. J., Saron, C. D., Senulis, J. A., Ekman, P., & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology I. Journal of Personality and Social Psychology, 58(2), 330-341.
Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003). Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning. Annals of the New York Academy of Sciences, 985, 233-250.
Hebb, D. O. (Ed.). (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons.
Herry, C., Ciocchi, S., Senn, V., Demmou, L., Müller, C., & Lüthi, A. (2008). Switching on and off fear by distinct neuronal circuits. Nature, 454(7204), 600-U628.
Hiroi, N., & White, N. M. (1991). The lateral nucleus of the amygdala mediates expression of the amphetamine-produced conditioned place preference. The Journal of Neuroscience, 17(7), 2107-2116.
Iwataa, J., LeDoux, J. E., Meeleya, M. P., Arnerica, S., & Reis, D. J. (1986). Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Research, 383(1-2), 195-214.
Kapp, B. S., Frysinger, R. C., Gallagher, M., & Haselton, J. R. (1979). Amygdala central nucleus lesions: Effect on heart rate conditioning in the rabbit. Physiology & Behavior, 23(6), 1109-1117.
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International Affective Picture System (IAPS): Technical Manual and Affective Ratings., NIMH Center for the Study of Emotion and Attention, 1997.
LeDoux, J. E., Sakaguchi, A., Iwata, J., & Reis, D. J. (1986). Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience 17(3), 615-627.
LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. Journal of Neuroscience, 4, 683-698.
Liang, K. C. (1999). Pre- or post-training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors. European Journal of Neuroscience, 11(5), 1491-1500.
Liang, K. C., Hon, W., & Davis, M. (1994). Pre- and posttraining infusion of N-methyl-D-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task. Behavioral Neuroscience, 108(2), 241-253.
Liang, K. C., McGaugh, J. L., Martinez, J. L. J., Jensen, R. A., Vasquez, B. J., & Messing, R. B. (1982). Post-training amygdaloid lesions impair retention of an inhibitory avoidance response. Behavioural Brain Research, 4(3), 237-249.
Liang, K. C., Yen, C. T., Chang, C. H., & Chen, C. (2008). Involvement of the amygdala in two different forms of the inhibitory avoidance task. In M. Onozuka & C. T. Yen (Eds.), Novel trends in brain science: Brain imaging, learning and memory, stress and fear, and pain (pp. 167-182). New York: Springer.
Maren, S. (2000). Auditory fear conditioning increases CS-elicited spike firing in lateral amygdala neurons even after extensive overtraining. European Journal of Neuroscience, 12(11), 4047-4054.
Maren, S., & Quirk, G. J. (2004). Neuronal signalling of fear memory. Nature Reviews Neuroscience, 5(11), 844-852.
Murray, E. A. (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489-497.
Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439(16), 865-870.
Paz, R., Pelletier, J. G., Bauer, E. P., & Pare, D. (2006). Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nature Neuroscience, 9(10), 1321-1329.
Pelletier, J. G., Likhtik, E., Filali, M., & Pare, D. (2005). Lasting increases in basolateral amygdala activity after emotional arousal: Implications for facilitated consolidation of emotional memories. Learning and Memory, 12(2), 96-102.
Paxions, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates (4th ed.). San Diego, CA: Academic Press.
Plutchik, R. (1960). The multifactor-analytic theory of emotion. Journal of Psychology, 50(1), 153-171.
Quirk, G. J., Repa, J. C., & LeDoux, J. E. (1995). Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: Parallel recordings in the freely behaving rat. Neuron, 15(5), 1029-1039.
Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4(7), 724-731.
Rorick-Kehn, L. M., & Steinmetz, J. E. (2005). Amygdalar unit activity during three learning tasks: Eyeblink classical conditioning, Pavlovian fear conditioning, and signaled avoidance conditioning. Behavioral Neuroscience, 119(5), 1254-1276.
Saddoris, M. P., Gallagher, M., & Schoenbaum, G. (2005). Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron, 46, 321-331.
Salzman, C. D., Paton, J. J., Belova, M. A., & Morrison, S. E. (2007). Flexible neural representations of value in the primate brain. Annals of the New York Academy of Sciences, 1121, 336-354.
White, N. M., & McDonald, R. J. (1993). Acquisition of a spatial conditioned place preference is impaired by amygdala lesions and improved by fornix lesions. Behavioural Brain Research, 55(2), 269-281.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top