跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭柏呈
研究生(外文):Bo-Cheng Kuo
論文名稱:注意力在工作記憶中運作的神經機制
論文名稱(外文):Neural Mechanisms of Attention-Based Operation in Working Memory
指導教授:葉怡玉葉怡玉引用關係
指導教授(外文):Yei-Yu Yeh
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:262
中文關鍵詞:事件相關電位功能性磁振造影大腦功能性聯結注意力調控工作記憶
外文關鍵詞:Event-related potentialfunctional magnetic resonance imagingfunctional connectivityorienting attentionworking memory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:975
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
透過注意力的調控,我們可以將訊息暫時地維持在工作記憶表徵。然而,我們對於注意力與工作記憶互動的大腦神經機制仍缺乏清楚的認識。本論文利用行為測量方法、腦電波測量,以及功能性磁振造影,探討注意力調控在工作記憶中運作的神經表徵。第一章介紹本論文的研究背景與研究假設;第二章我介紹所使用的神經影像技術與資料分析原理。第三章利用事件相關電位檢驗當個體從工作記憶表徵中選擇目標項目時,是否涉及具有空間與視覺特定性的腦電波活化,且此一活化與個體從知覺表徵中選擇目標項目時所引起的活化相同。第四章與第五章利用事件相關功能性磁振造影探討注意力調控的有效性是否影響工作記憶表徵的維持與提取,研究結果展現了有效的注意力調控會引發視覺皮質強烈的神經活化以維持記憶表徵,且注意力調控的有效性與記憶提取的困難度在大腦前額葉與後頂葉皮質的活化上也會產生顯著的交互作用,這些與注意力調控有關的大腦區域反映了由前而後的階層性關係。第六章透過功能性聯結的分析方法,展現注意力調控在工作記憶中運作的神經網路,以及大腦區域間的交互作用關係。最後,第七章針對我的研究結果進行綜合性的討論,對注意力在工作記憶中運作提出一個整合性的認知神經看法。
Attention and working memory are intrinsically bound, but the neural mechanisms of their interaction are still less understood. The goal of this thesis is to establish a framework that provides neural representations for understanding the operation of attentional control in working memory with the evidence integrated from behavioural measures, event-related potentials (ERPs), and functional magnetic resonance imaging (fMRI). Chapter 3 demonstrates the two ERPs experiments that examine whether selecting relevant target items from within working memory representations involves spatially specific, retinotopic biasing of neural activity in a manner analogous to that which occurs during visual search for target items in perceptual domain. Chapter 4 describes an event-related fMRI experiment that investigates the neural correlates of the effectiveness of orienting attention during retention and the mnemonic evaluation whilst comparing working memory representations with current perceptual stimuli. Chapter 5 shows an event-related fMRI study that demonstrates that the neural activity in the posterior areas is modulated by reflectively transient attention-based operation during working memory retention. Finally, I identify the neural network of the brain regions associated with the top-down attentional operation in working memory representations using coherence analysis in Chapter 6. In conclusion, I investigate the interaction within a distributed neural network for supporting attentional operation and how the cognitive framework of attentional operation in working memory can be implemented with a dynamic neural network in the brain. Based on the findings and implications, directions for future research are discussed.
Table of Contents

Acknowledgments i
Abstract (Chinese) ii
Abstract (English) iii
Chapter 1: Introduction 1
1-1. Attentional selection of relevant information in perception 6
1-1-1. Behavioral measures of stimulus salience biasing the competition in perception 8
1-1-2. The neural basis of visuospatial attention 10
1-1-3. Top-down control modulates visual processing efficiency 13
1-1-4. The neural correlates of top-down and bottom-up attentional processes 17
1-1-5. Conclusion 21
1-2. The nature of working memory 22
1-2-1. Cognitive models of working memory 23
1-2-2. Neural correlates of working memory 26
1-2-3. Neural source of top-down control 30
1-2-4. Capacity limitation and competition of working memory representations 33
1-2-5. Conclusion 36
1-3. The role of attentional operation in working memory 37
1-3-1. Orienting attention in working memory 38
1-3-2. Attention-based rehearsal hypothesis 43
1-3-3. Attentional prioritization in working memory 47
1-3-4. Conclusion 51
1-4. Hypotheses and predictions 52
Chapter 2: Neuroimaging methodologies 57
2-1. Principles and methodologies of EEG/ERPs 58
2-1-1. ERP physiology 59
2-1-2. ERP recording 60
2-1-3. ERP interpreting 63
2-1-4. Topographical analysis 65
2-2. Principles and methodologies of fMRI 66
2-2-1. fMRI physiology 67
2-2-2. fMRI experimental design 69
2-2-3. fMRI data processing 71
2-2-4. fMRI univariate statistical analysis 74
2-2-5. fMRI multivariate statistical analysis 76

Chapter 3: Searching for targets within the spatial layout of working memory: An ERP study 81
3-1. Introduction 81
3-2. Methods and materials 85
3-3. Results 96
3-4. Discussion 103
3-5. Conclusion 108
Chapter 4: The neural correlates of the effectiveness of orienting attention during working memory retention affects the difficulty of mnemonic evaluation 111
4-1. Introduction 111
4-2. Methods and materials 118
4-3. Results 125
4-4. Discussion 136
4-5. Conclusion 142
Chapter 5: Neural correlates of top-down control of refreshing in working memory 145
5-1. Introduction 145
5-2. Methods and materials 150
5-3. Results 156
5-4. Discussion 168
5-5. Conclusion 177
Chapter 6: Functional connectivity of attentional operation in working memory 179
6-1. Introduction 179
6-2. Methods and materials 183
6-3. Results 188
6-4. Discussion 196
6-5. Conclusion 203
Chapter 7: General Discussion 205
7-1. Objectives 205
7-2. Summary of the main findings 207
7-3. Discussion 210
7-4. Future studies 223
7-5. Conclusion 223
Reference 225


List of Figures

Figure 1-1. The structure of the thesis. 53
Figure 2-1. The 40-channel EEG system. 61
Figure 3-1. Schematic of experimental trials. 89
Figure 3-2. Sensitivity measures (d’) and mean response times (ms) in target present trials across the two types of search tasks (visual and mnemonic) and two types of search load (2-item and 4-item) were measured in (a) Experiment 1 and (b) Experiment 2. 98
Figure 3-3. The N2pc effects in the visual and mnemonic domains showed equivalent time-courses (grand-averaged waveforms) and topographies in (a) Experiment 1 and (b) Experiment 2. 101
Figure 4-1. An example of (a) an early cue in the binding -change condition, and (b) a late cue in the color -change condition. 115
Figure 4-2. (a) Mean accuracy (% correct) and (b) reaction time (RT in ms) of correct response in each condition. 126
Figure 4-3. Areas of significant activation associated with the cueing effect. 128
Figure 4-4. Areas of significant activation associated with the effect of change type. 130
Figure 4-5. Areas of significant activation related to the interaction effect. 133
Figure 4-6. Areas of significant activation related to the effects of (a) color-change minus binding-change under early cueing and (b) binding-change minus color-change under late cueing. 135
Figure 5-1. Examples of (a) a sustained cue, (b) transient cue, (c) test cue, and (d) no-cue control change-detection tasks. 149
Figure 5-2. (a) Mean accuracy (% correct) and (b) reaction time (RT in ms) of correct response in each condition. 157
Figure 5-3. Areas of significant activation related to attentional and executive control from the contrast of change (grey bar) minus no-change (white bar) trials. 159
Figure 5-4. Areas of significant activation associated with the cueing effect. 161
Figure 5-5. An anatomical gradient effect from posterior regions (MOG, SPL, and PCu) to anterior regions (PMd and MFG) of the right hemisphere was observed under transient cueing. 167
Figure 6-1. Coherence maps of the left MFG seed (a) and the left SPL/IPS seed (b) for early-cueing and late-cueing conditions from data set 1 (Chapter 4). 189
Figure 6-2. The comparison of the coherence maps for early-cueing condition with late-cueing condition. 190
Figure 6-3. Coherence maps of the left MFG seed (a) and the left SPL/IPS seed (b) for sustained-cueing, transient-cueing, test-cueing and no-cue conditions from data set 2 (Chapter 5). 192
Figure 6-4. The comparison of the coherence maps for sustained- and transient-cueing conditions with test-cueing condition respectively under the left MFG as a seed region. 194
Figure 6-5. The comparison of the coherence maps for sustained- and transient-cueing conditions with test-cueing condition respectively under the left SPL/IPS as a seed region. 195
Figure 6-6. Summary of the findings of functional connectivity. 197


List of Tables

Table 3-1. Mean d’ scores and reaction times (RTs in ms) of correct responses in each condition. 98
Table 4-1. Mean accuracy (% correct) and reaction time (RT in ms) of correct response in each condition. 127
Table 4-2. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for successful detection and correct rejection. 129
Table 4-3. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for binding-change minus color-change and color-change minus binding-change. 131
Table 4-4. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for the interaction effect between cue onset time and change type. 132
Table 4-5. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for color-change minus binding-change under early cueing and binding-change minus color-change under late cueing. 134
Table 5-1. Mean accuracy (%) and reaction times (RTs in ms) of correct responses in each condition. 158
Table 5-2. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for the change versus no-change trials (p < 0.001). 160
Table 5-3. Brain regions and their Talairach coordinates in which significantly activated clusters were observed for each cueing condition versus no-cue control condition (p < 0.001). No significant activation was observed in test-cueing condition minus no-cue condition under no-change trials. 163
AEEGS. (1991). American Electroencephalographic Society guidelines for standard electrode position nomenclature. Journal of Clinical Neurophysiology, 8(2), 200-202.
Aguirre, G. K., Zarahn, E., & D''Esposito, M. (1998). The variability of human BOLD hemodynamic responses. Neuroimage, 8(4), 360-369.
Allen, R. J., Baddeley, A. D., & Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135(2), 298-313.
Armstrong, K. M., Fitzgerald, J. K., & Moore, T. (2006). Changes in visual receptive fields with microstimulation of frontal cortex. Neuron, 50(5), 791-798.
Asari, T., Konishi, S., Jimura, K., & Miyashita, Y. (2005). Multiple components of lateral posterior parietal activation associated with cognitive set shifting. Neuroimage, 26(3), 694-702.
Ashburner, J., & Friston, K. J. (1997). The role of registration and spatial normalization in detecting activations in functional imaging. Clinical MRI/Developments in MR, 7, 26-28.
Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840-847.
Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126.
Awh, E., Jonides, J., & Reuter-Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 780-790.
Awh, E., Jonides, J., Smith, E. E., Buxton, R. B., Frank, L. R., Love, T., et al. (1999). Rehearsal in spatial working memory: evidence from neuroimaging. Psychological Research, 10(5), 433-437.
Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: evidence from positron emission tomography. Psychological Science, 7(1), 25-31.
Awh, E., & Vogel, E. K. (2008). The bouncer in the brain. Nature Neuroscience, 11(1), 5-6.
Awh, E., Vogel, E. K., & Oh, S.-H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208.
Büchel, C., Coull, J. T., & Friston, K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science, 283(5407), 1538-1541.
Büchel, C., & Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex, 7(8), 768-778.
Baddeley, A. D. (1986). Working memory. New York: Oxford University Press.
Baddeley, A. D. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49A(1), 5-28.
Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in Cognitive Sciences, 4(11), 417-423.
Baddeley, A. D. (2001). Is working memory still working? American Psychologist, 56(11), 851-864.
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47-89). New York: Academic Press.
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47(6), 907-918.
Beck, D. M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16(5), 712-717.
Beck, D. M., Rees, G., Frith, C. D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4(6), 645-650.
Beltmonte, M. K., & Yurgelun-Todd, D. A. (2003). Anatomic dissociation of selective and suppressive processes in visual attention. Neuroimage, 19(1), 180-189.
Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 16(13), 4207-4221.
Broadbent, D. E. (1958). Perception and communication. London: Pergamon.
Buckner, R. L. (1998). Event-related fMRI and the hemodynamic response. Human Brain Mapping, 6(5-6), 373-377.
Buckner, R. L., & Braver, T. S. (1999). Event-related functional MRI. In C. T. W. Moonen & P. A. Bandettini (Eds.), functional MRI: Springer-Verlag Berlin Heidelberg.
Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860-1862.
Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20-26.
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747-749.
Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363(6427), 345-347.
Chen, W., & Ogawa, S. (1999). Principles of BOLD functional MRI. In C. T. W. Moonen & P. A. Bandettini (Eds.), functional MRI: Springer-Verlag Berlin Heidelberg.
Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608.
Collette, F., & Van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavioral Reviews, 26(2), 105-125.
Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192-205.
Conner, C. E., Egeth, H. E., & Ysntis, S. (2004). Visual attention: bottom-up versus top-down. Current Biology, 14(19), R850-R852.
Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proceedings of the National Academy of Sciences of the United States of America, 95(3), 831-838.
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3(3), 292-297.
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Peterson, S. E. (1990). Attentional modulation of neural processing of shape, color, and velocity in humans. Science, 248(4962), 1156-1159.
Corbetta, M., Miezin, F. M., Shulman, G., L., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13(3), 1202-1226.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.
Courtney, S. M., Ungerledier, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed activity in a distributed neural system for human working memory. Nature, 386(6625), 608-611.
Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychological Bulletin, 104(2), 163-191.
Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 62-101). Cambridge, UK: Cambridge University Press.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
Crick, F. (1994). The Astonishing Hypothesis. New York: Charles Scribner''s Sons.
Curtis, C. E., & D''Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415-423.
Curtis, C. E., Rao, V. Y., & D''Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24(16), 3944-3952.
Curtis, C. E., Sun, F. T., Miller, L. M., & D''Esposito, M. (2005). Coherence between fMRI time-series distinguishes two spatial working memory networks. Neuroimage, 26(1), 177-183.
D''Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 761-772.
D''Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 41(1), 66-86.
D''Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3-11.
Dale, A. M., & Buckner, R. L. (1997). Selective averaging of rapidly presented individual trials using fMRI. Human Brain Mapping, 5(5), 329-340.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193-222.
Deutsch, J. A., & Deutsch, D. (1963). Attention: some theoretical considerations. Psychological Review, 70(1), 80-90.
Dobbins, I. G., & Wagner, A. D. (2005). Domain-general and domain-sensitive prefrontal mechanisms for recollecting events and detecting novelty. Cerebral Cortex, 15(11), 1768-1778.
Donaldson, D. I., & Buckner, R. L. (2001). Effective paradigm design. In P. Jezzard, M. Matthews & S. M. Smith (Eds.), Functional MRI. New York: Oxford University Press.
Druzgal, J. T., & D''Esposito, M. (2001). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10(3), 355-364.
Druzgal, J. T., & D''Esposito, M. (2003). Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. Journal of Cognitive Neuroscience, 15(6), 771-784.
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458.
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23(10), 475-483.
Egeth, H. E., & Yantis, S. (1997). Visual attention: control, representation, and time course. Annual Review of Psychology, 48, 269-297.
Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99(3), 225-234.
Endo, N., Saiki, J., Nakao, Y., & Saito, H. (2003). Perceptual judgments of novel contour shapes and hierarchical descriptions of geometrical properties. The Japanese Journal of Psychology, 74(4), 346-353.
Engelmann, J. B., & Pessoa, L. (2007). Motivation sharpens exogenous spatial attention. Emotion, 7(3), 668-674.
Fias, W., Dupont, P., Reynvoet, B., & Orban, G. A. (2002). The quantitative nature of a visual task differentiates between ventral and dorsal stream. Journal of Cognitive Neuroscience, 14(4), 646-658.
Fletcher, P. C., & Henson, R. N. A. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124(Pt 5), 849-881.
Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24, 847-858.
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044.
Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and colour. Journal of Experimental Psychology: Human Perception and Performance, 20(2), 317-329.
Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995a). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636-647.
Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995b). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med., 33, 636-647.
Friston, K. J., Ashburner, J., Frith, C., Poline, J. B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165-189.
Friston, K. J., & Buchel, C. (2000). Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7591-7596.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. Neuroimage, 6(3), 218-229.
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). Event-Related fMRI: Characterizing Differential Responses. Neuroimage, 7(1), 30-40.
Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1993). Functional connectivity: the principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13(1), 5-14.
Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? Neuroimage, 10(1), 1-5.
Friston, K. J., Holms, A. P., Worsley, K. J., Poline, J. P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain mapping, 2(4), 189-210.
Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain mapping, 1(2), 153-171.
Friston, K. J., Penny, W. D., & Glaser, D. E. (2005). Conjunction revisited. Neuroimage, 25(3), 661-667.
Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey''s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331-349.
Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research, 133(1), 66-70.
Fuster, J. M. (2003). Cortex and mind: Unifying cognition. New York: Oxford University Press.
Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: an fMRI study. Cognitive Brain Research, 20(2), 226-241.
Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D''Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17(3), 507-517.
Gazzaley, A., Rissman, J., Cooney, J. W., Rutman, A., Seibert, T., Clapp, W., et al. (2007). Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex, 17(suppl_1), i125-135.
Geng, J. J., Eger, E., Ruff, C. C., Kristjansson, A., Rotshtein, P., & Driver, J. (2006). On-line attentional selection from competing stimuli in opposite visual fields: effects on human visual cortex and control processes. Journal of Neurophysiology, 96(5), 2601-2612.
Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., Kim, Y.-H., Meyer, J. R., et al. (1999). Large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain, 122(6), 1093-1106.
Gobel, S. M., Johansen-Berg, H., Behrens, T., & Rushworth, M. F. (2004). Response-selection-related parietal activation during number comparison. Journal of Cognitive Neuroscience, 16(9), 1536-1551.
Goldman-Rakic, P. S. (1988). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 87-102). New York: Oxford University Press.
Goldman-Rakic, P. S. (1998). The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. In A. C. Roberts, T. W. Robbins & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 87-102). New York: Oxford University Press.
Gratton, G. (1998). The contralateral organization of visual memory: a theoretical concept and a research tool. Psychophysiology, 35(6), 638-647.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Huntington: New York: Robert E. Krieger Publishing Company.
Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15(8), 1176-1194.
Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14(11 Pt 1), 6336-6353.
Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., et al. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372(6506), 543-546.
Henson, R., Shallice, T., & Dolan, R. (2000). Neuroimaging evidence for dissociable forms of repetition priming. Science, 287(5456), 1267-1272.
Hickey, C., Di Lollo, V., & McDonald, J. J. (in press). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 0(0), 1-16.
Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1257-1270.
Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology. Human Perception and Performance, 29(2), 388-403.
Hopf, J.-M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10(12), 1233-1241.
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284-291.
Hopfinger, J. B., Woldorff, M. G., Fletcher, E. M., & Mangun, G. R. (2001). Dissociating top-down attentional control from selective perception and action. Neuropsychologia, 39(12), 1277-1291.
Huettel, S. A., Güzeldere, G., & McCarthy, G. (2001). Dissociating the neural mechanisms of visual attention in change detection using functional MRI. Journal of Cognitive Neuroscience, 13(7), 1006-1018.
James, W. (1980). The principle of psychology. New York: Dover.
Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography & Clinical Neurophysiology, 10, 371-375.
Jennings, J. R., & Wood, C. C. (1976). Letter: the epsilon-adjustment procedure for repeated-measures analyses of variance. Psychophysiology, 13(3), 277-278.
Johnson, M. K. (1992). MEM: mechanisms of recollection. Journal of Cognitive Neuroscience, 4(3), 268-280.
Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., & Anderson, A. W. (2003). FMRI evidence for an organization of prefrontal cortex by both type of process and type of information. Cerebral Cortex, 13(3), 265-273.
Johnson, M. K., Raye, C. L., Mitchell, K. J., Greene, E. J., Cunningham, W. A., & Sanislow, C. A. (2005). Using fMRI to investigate a component process of reflection: prefrontal correlates of refreshing a just-activated representation. Cognitive, Affective & Behavioral Neuroscience, 5(3), 339-361.
Johnson, M. R., Mitchell, K. J., Raye, C. L., D''Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. Neuroimage, 37(1), 290-299.
Jolicœur, P., Brissona, B., & Robitaille, N. (2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215(18), 160-172.
Josephs, O., Turner, R., & Friston, K. J. (1997). Event-related fMRI. Human Brain Mapping, 5(4), 243-248.
Jubault, T., Ody, C., & Koechlin, E. (2007). Serial organization of human behavior in the inferior parietal cortex. Journal of Neuroscience, 27(41), 11028-11036.
Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99(1), 122-149.
Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.
Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751-761.
Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315-341.
Kastner, S., & Ungerleider, L. G. (2001). The neural basis of biased competition in human visual cortex. Neuropsychologia, 39(12), 1263-1276.
Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026.
Kim, Y. H., Gitelman, D. R., Nobre, A. C., Parrish, T. B., LaBar, K. S., & Mesulam, M. M. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. Neuroimage, 9(3), 269-277.
Kimberg, D. Y., D''Esposito, M., & Farah, M. J. (1997). Cognitive function in the prefrontal cortex- working memory and executive control. Current Direction in Psychological Science, 6(6), 185-192.
Kincade, M., Abrams, R. A., Asafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. Journal of Neuroscience, 25(18), 4593-4604.
Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45(2), 240-249.
Kosslyn, S. M., Ball, T. M., & Reiser, B. J. (1978). Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance, 4(1), 47-60.
LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: a functional MRI comparison within subjects. Neuroimage, 10(6), 695-704.
Lehman, D. (1987). Principle of spatial analysis. In A. S. Gevins & A. Rémond (Eds.), Handbook of electroencephalography and clinical neurophysiology. Methods of analysis of brain electrical and magnetic signals (Vol. 1, pp. 309-354). Amsterdam: Elsevier.
Lepsien, J., Griffina, I. C., Devlin, J. H. T., & Nobre, A. C. (2005). Directing spatial attention in mental representations: Interactions between attentional orienting and working-memory load Neuroimage, 26(3), 733-743.
Lepsien, J., & Nobre, A. C. (2006). Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Brain Research, 1105(1), 20-31.
Lepsien, J., & Nobre, A. C. (2007). Attentional modulation of object representations in working memory. Cerebral Cortex, 17(9), 2072-2083.
Leung, H. C., Oh, H., Ferri, J., & Yi, Y. (2007). Load response functions in the human spatial working memory circuit during location memory updating. Neuroimage, 35(1), 368-377.
Levy, R., & Goldman-Rakic, P. S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. Experimental Brain Research, 133(1), 23-32.
Livingstone, M. S., & Hubel, D. H. (1988). Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? Journal of Neuroscience, 8(11), 4334-4339.
Logie, R. H. (1995). Visuo-spatial working memory. Hove, UK: Erlbaum.
Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12(5), 582-587.
Luck, S. J. (2005). An introduction to the event-related potential technique: MIT press.
Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24-42.
Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: evidence from human electrophysiology. Journal of Experimental Psychology. Human Perception and Performance, 20(5), 1000-1014.
Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4(11), 432-440.
Luks, T. L., Simpson, G. V., Feiwell, R. J., & Miller, W. L. (2002). Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. Neuroimage, 17(2), 792-802.
Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: activation of the left precuneus and left prefrontal cortex. Neuroimage, 20(4), 1934-1943.
MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835-1838.
Makovski, T., & Jiang, Y. V. (2007). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review, 14(6), 1072-1078.
Makovski, T., Shim, W. M., & Jiang, Y. V. (2006). Interference from filled delays on visual change detection. Journal of Vision, 6(12), 1459-1470.
Makovski, T., Sussman, R., & Jiang, Y. V. (2008). Orienting attention in visual working memory reduces interference from memory probes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34(2), 369-380.
Mazza, V., Turatto, M., Umiltà, C., & Eimer, M. (2007). Attentional selection and identification of visual objects are reflected by distinct electrophysiological responses. Experimental Brain Research, 181(3), 531-536.
McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77-94.
Mechelli, A., Henson, R. N., Price, C. J., & Friston, K. J. (2003a). Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage, 18(3), 806-810.
Mechelli, A., Price, C. J., Henson, R. N., & Friston, K. J. (2003b). Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage, 18(3), 798-805.
Menon, R. S., & Kim, S.-G. (1999). Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends in Cognitive Sciences, 3(6), 207-216.
Mesulam, M. M. (1990). Large-scale neurocognitive network and distributed processing for attention, language, and memory. Annual Review of Neurology, 28(5), 597-613.
Mesulam, M. M. (1999). Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1387), 1325-1346.
Michel, C. M., & Murray, M. M. (2008). From Brain Topography to Brain Imaging. Brain Topography, 20(4), 181-182.
Miller, B. T., & D''Esposito, M. (2005). Searching for " the top" in the top-down control. Neuron, 48(4), 535-538.
Miller, B. T., Verstynen, T., Johnson, M. K., & D''Esposito, M. (2008). Prefrontal and parietal contributions to refreshing: an rTMS study. Neuroimage, 39(1), 436-440.
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
Miyake, A., & Shah, P. (1999). Models of working memory: mechanisms of active maintenance and executive control. Cambridge, UK: Cambridge University Press.
Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370-373.
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782-784.
Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909-919.
Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience, 14(4), 2178-2189.
Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. Journal of Neurophysiology, 89(6), 3340-3343.
Murray, S. O., Olshausen, B. A., & Woods, D. L. (2003). Processing shape, motion and three-dimensional shape-from-motion in the human cortex. Cerebral Cortex, 13(5), 508-516.
Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251-269.
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1-17.
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J.-B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653-660.
Nobre, A. C. (2001). The attentive homunculus: now you see it, now you don''t. Neuroscience and Biobehavioral Reviews, 25(6), 477-496.
Nobre, A. C., Coull, J. T., Maquet, P., Frith, C. D., Vandenberghe, R., & Mesulam, M. M. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363-373.
Nobre, A. C., Griffina, I. C., & Rao, A. (2008). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 1-9.
Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., Mesulam, M. M., Frackowiak, R. S., & Frith, C. D. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120(Pt 3), 515-533.
Nobre, A. C., Sebestyen, G. N., & Miniussi, C. (2000). The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia, 38(7), 964-974.
Nobre, A. C., & Shaprio, K. L. (2006). Other dimensions of attention. Neural Networks, 19(9), 1450-1452.
Norman, D. A., & Shallice, T. (1986). Attention to action: willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 1-18). New York: Plenum Press.
O''Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002). Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. Cerebral Cortex, 12(3), 246-257.
Oberauer, K., & Kliegl, R. (2006). A formal model of capacity limits in working memory. Journal of Memory and Language, 55(4), 601-626.
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868-9872.
Owen, A. M. (2000). The role of the lateral frontal cortex in mnemonic processing: the contribution of functional neuroimaging. Experimental Brain Research, 133(1), 33-43.
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46-59.
Pashler, H. (1988). Familiarity and visual change detection. Perception & psychophysics, 44(4), 369-378.
Passingham, D., & Sakai, K. (2004). The prefrontal cortex and working memory: physiology and brain imaging. Current Opinion in Neurobiology, 14(2), 163-168.
Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97-107.
Pessoa, L., Gutierrez, E., Bandettini, P., & Ungerleider, L. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975-987.
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10), 3990-3998.
Pessoa, L., & Ungerleider, L. G. (2004). Neural correlates of change detection and change blindness in a working memory task. Cerebral Cortex, 14(5), 511-520.
Petrides, M. (1998). Specialized systems for the processing of mnemonic information within the primate frontal cortex. In A. C. Roberts, T. W. Robbins & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 103-116). New York: Oxford University Press.
Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44-54.
Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997a). Combining spatial extent and peak intensity to test for activations in functional imaging. NeuroImage, 5, 83-96.
Poline, J. B., Worsley, K. J., Evans, A. C., & Friston, K. J. (1997b). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5(2), 83-96.
Pollmann, S., & von Cramon, D. Y. (2000). Object working memory and visuospatial processing: functional neuroanatomy analyzed by event-related fMRI. Experimental Brain Research, 133(1), 12-22.
Posner, M. I. (1980). Orientating of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3-25.
Posner, M. I., Cohen, Y., & Rafal, R., D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298(1089), 187-198.
Posner, M. I., & Peterson, S. E. (1990). The attentional system of the human brain. Annual Reviews of Neuroscience, 13, 25-42.
Postle, B. R., Awh, E., Jonides, J., Smith, E. E., & D''Esposito, M. (2004). The where and how of attention-based rehearsal in spatial working memory. Cognitive Brain Research, 20(2), 194-205.
Postle, B. R., & Brush, L. N. (2004). The neural bases of the effects of item-nonspecific proactive interference in working memory. Cognitive, Affectective, & Behavoral Neuroscience, 4(3), 379-392.
Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: A new approach to brain activation experiments. Neuroimage, 5(4 Pt 1), 261-270.
Raye, C. L., Johnson, M. K., Mitchell, K. J., Greene, E. J., & Johnson, M. R. (2007). Refreshing: a minimal executive function. Cortex, 43(1), 135-143.
Raye, C. L., Johnson, M. K., Mitchell, K. J., Reeder, J. A., & Greene, E. J. (2002). Neuroimaging a single thought: dorsolateral PFC activity associated with refreshing just-activated information. Neuroimage, 15(2), 447-453.
Rensink, R. A. (2000). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7(1-3), 345-376.
Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: exploration in experimental cognitive psychology. Neuroscience, 139(1), 5-21.
Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611-647.
Rissman, J., Gazzaley, A., & D''Esposito, M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage, 23(2), 752-763.
Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: activity in prefrontal area 46 relates to selection rather than maintenance in memory. Neuroimage, 14(1 Pt 1), 77-86.
Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention system: a state of activated long-term memory. Behavioral and Brain Sciences, 26(6), 709-728.
Ruff, C. C., Blankenburg, F., Bjoertomt, O., Bestmann, S., Freeman, E., Haynes, J. D., et al. (2006). Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Current Biology, 16(15), 1479-1488.
Rugg, M. D., & Coles, M. G. (1995). Electrophysiology of Mind: Event-Related Potentials and Cognition. New York: Oxford University Press.
Rypma, B., Berger, J. S., & D''Esposito, M. (2002). The influence of working memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721-731.
Rypma, B., & D''Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6558-6663.
Rypma, B., & D''Esposito, M. (2003). A subsequent-memory effect in dorsolateral prefrontal cortex. Cognitive Brain Research, 16(2), 162-166.
Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. Journal of Neuroscience, 26(4), 1211-1218.
Schroeder, C. E., Mehta, A. D., & Foxe, J. J. (2001). Determinants and mechanisms of attentional modulation of neural processing. Frontiers in Bioscience, 6, D672-684.
Schumacher, E. H., Cole, M. W., & D''Esposito, M. (2007). Selection and maintenance of stimulus-response rules during preparation and performance of a spatial choice-reaction task. Brain Research, 1136(1), 77-87.
Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15(6), 770-786.
Shin, E., Fabiani, M., & Gratton, G. (2006). Multiple levels of stimulus representation in visual working memory. Journal of Cognitive Neuroscience, 18(5), 844-858.
Shomstein, S., & Behrmann, M. (2006). Cortical systems mediating visual attention to both objects and spatial location. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11387-11392.
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224-232.
Simon, S. R., Meunier, M., Piettre, L., Berardi, A. M., Segebarth, C. M., & Boussaoud, D. (2002). Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI. Journal of Neurophysiology, 88(4), 2047-2057.
Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9(1), 16-20.
Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLoS ONE, 3(2), e1699.
Slotnick, S. D., Thompson, W. L., & Kosslyn, S. M. (2005). Visual mental imagery induces retinotopically organized activation of early visual areas. Cerebral Cortex, 15(10), 1570-1583.
Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5-42.
Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(20), 12061-12068.
Smith, E. E., & Jonides, J. (1999). Storage and executive process in the frontal lobes. Science, 283(5408), 1657-1661.
Smith, S. M. (2001). Overview of fMRI analysis. In P. Jezzard, P. M. Matthews & S. M. Smith (Eds.), Functional MRI. New York: Oxford University Press.
Sperling, G. (1960). The information available in brief visual presentation. Psychological Monographs, 74, 1-29.
Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652-654.
Sun, F. T., Miller, L. M., & D''Esposito, M. (2004). Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage, 21(2), 647-658.
Sun, F. T., Miller, L. M., & D''Esposito, M. (2005). Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. Neuroimage, 28(1), 227-237.
Sun, F. T., Miller, L. M., Rao, A. A., & D''Esposito, M. (2007). Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral Cortex, 17(5), 1227-1234.
Talairach, J., & Tournoux, P. (1988). A Co-planer Stereotaxic Atlas of the Human Brain. New York, NY: Thieme.
Talairach, J., & Tournoux, P. (1988). Co-planer stereotaxic atlas of the human brain. New York: Thieme Medical Publisher Inc.
Taylor, P. C., Nobre, A. C., & Rushworth, M. F. (2007). Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. Journal of Neuroscience, 27(42), 11343-11353.
Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50(2), 184-193.
Tomasi, D., Chang, L., Caparelli, E. C., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132(1), 158-165.
Treisman, A. M. (1988). Features and objects: the fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40A(2), 201-237.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.
Treue, S. (2003). Visual attention: the where, what, how and why of saliency. Current Opinion in Neurobiology, 13(4), 428-432.
Turatto, M., Sandrini, M., & Miniussi, C. (2004). The role of the right dorsolateral prefrontal cortex in visual change awareness. Neuroreport, 15(16), 2549-2552.
van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without conflict: implications for performance monitoring theories of anterior cingulate cortex. Brain & Cognition, 56(2), 267-276.
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6894), 748-751.
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503.
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunction, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114.
Vuilleumier, P., Henson, R. N., Driver, J., & Dolan, R. J. (2002). Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. Nature Neuroscience, 5(5), 491-499.
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(4), 255-274.
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9(9), 445-453.
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48-64.
Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23(4), 747-764.
Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology, 79(3), 1574-1578.
Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K., & Evans, A. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58-73.
Worsley, K. J. (2001). Statistical analysis of activation images. In P. Jezzard, P. M. Matthews & S. M. Smith (Eds.), Functional MRI. New York: Oxford University Press.
Worsley, K. J., & Friston, K. J. (2000). A test for a conjunction. Statistics and Probability Letters, 47(2), 135-140.
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A., Friston, K. J., & Evans, A. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58-73.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 121-134.
Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., et al. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995-1002.
Yeh, Y. Y., Kuo, B. C., & Liu, H. L. (2007). The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes. Brain Research, 1130(26), 146-157.
Yeh, Y. Y., Yang, C. T., & Chiu, Y. C. (2005). Binding or Prioritization: The role of selective attention in visual short-term memory. Visual Cognition, 12(5), 759-799.
Zarahn, E., Aquirre, G. K., & D''Esposito, M. (1999). Temporal isolation of the neural correlates of spatial mnemonic processing with fMRI. Cognitive Brain Research, 7(3), 255-268.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊